These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25752296)

  • 1. Adsorption of insoluble polysulfides Li2S(x) (x = 1, 2) on Li2S surfaces.
    Liu Z; Hubble D; Balbuena PB; Mukherjee PP
    Phys Chem Chem Phys; 2015 Apr; 17(14):9032-9. PubMed ID: 25752296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights into the Anchoring Mechanism of Polysulfides inside Nanoporous Covalent Organic Frameworks for Lithium-Sulfur Batteries.
    Song X; Zhang M; Yao M; Hao C; Qiu J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43896-43903. PubMed ID: 30480990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing reaction mechanisms of nanoconfined Li
    Liu Z; Deng H; Hu W; Gao F; Zhang S; Balbuena PB; Mukherjee PP
    Phys Chem Chem Phys; 2018 May; 20(17):11713-11721. PubMed ID: 29683168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance lithium-sulfur batteries enabled by regulating Li
    Lin Q; Huang L; Liu W; Li Z; Fang R; Wang DW; Yang QH; Lv W
    Phys Chem Chem Phys; 2021 Oct; 23(38):21385-21398. PubMed ID: 34549210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.
    Liu Z; Mukherjee PP
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5263-5271. PubMed ID: 28112507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C; Manthiram A
    J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pmma-XO (X = C, Si, Ge) monolayer as promising anchoring materials for lithium-sulfur battery: a first-principles study.
    An YR; Fan XL; Wang SY; Luo ZF; Hu Y; Xia ZH
    Nanotechnology; 2019 Feb; 30(8):085405. PubMed ID: 30523822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanospace-confinement copolymerization strategy for encapsulating polymeric sulfur into porous carbon for lithium-sulfur batteries.
    Ding B; Chang Z; Xu G; Nie P; Wang J; Pan J; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11165-71. PubMed ID: 25969951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pt-NbC Composite as a Bifunctional Catalyst for Redox Transformation of Polysulfides in High-Rate-Performing Lithium-Sulfur Batteries.
    Liu Y; Hong D; Chen M; Su Z; Gao Y; Zhang Y; Long D
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35008-35018. PubMed ID: 34275287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries.
    Helen M; Reddy MA; Diemant T; Golla-Schindler U; Behm RJ; Kaiser U; Fichtner M
    Sci Rep; 2015 Jul; 5():12146. PubMed ID: 26173723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li₂S/graphene composite for lithium-sulfur batteries.
    Li Z; Zhang S; Zhang C; Ueno K; Yasuda T; Tatara R; Dokko K; Watanabe M
    Nanoscale; 2015 Sep; 7(34):14385-92. PubMed ID: 26248299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing interfacial collective reaction behaviour of Li-S batteries.
    Zhou S; Shi J; Liu S; Li G; Pei F; Chen Y; Deng J; Zheng Q; Li J; Zhao C; Hwang I; Sun CJ; Liu Y; Deng Y; Huang L; Qiao Y; Xu GL; Chen JF; Amine K; Sun SG; Liao HG
    Nature; 2023 Sep; 621(7977):75-81. PubMed ID: 37673990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of Sputter-Deposited Lithium Sulfide Films.
    Klein MJ; Veith GM; Manthiram A
    J Am Chem Soc; 2017 Aug; 139(31):10669-10676. PubMed ID: 28731340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study.
    Timoshevskii V; Feng Z; Bevan KH; Zaghib K
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18362-8. PubMed ID: 26237114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.