These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25752425)

  • 1. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea.
    Li RY; Wu XM; Yin XH; Long YH; Li M
    Pestic Biochem Physiol; 2015 Feb; 118():19-25. PubMed ID: 25752425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The natural product citral can cause significant damage to the hyphal cell walls of Magnaporthe grisea.
    Li RY; Wu XM; Yin XH; Liang JN; Li M
    Molecules; 2014 Jul; 19(7):10279-90. PubMed ID: 25029074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of isobavachalcone as a potential drug for rice blast disease caused by the fungus
    Liu X; Li W; Hu B; Wang M; Wang J; Guan L
    J Biomol Struct Dyn; 2019 Aug; 37(13):3399-3409. PubMed ID: 30132740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi.
    Vicentini CB; Romagnoli C; Andreotti E; Mares D
    J Agric Food Chem; 2007 Dec; 55(25):10331-8. PubMed ID: 18001038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation.
    Zhang L; Sun C
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02.
    Zhang YL; Li S; Jiang DH; Kong LC; Zhang PH; Xu JD
    J Agric Food Chem; 2013 Feb; 61(7):1521-4. PubMed ID: 23360202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew.
    Kim JC; Choi GJ; Lee SW; Kim JS; Chung KY; Cho KY
    Pest Manag Sci; 2004 Aug; 60(8):803-8. PubMed ID: 15307672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the pathogenicity of Magnaporthe grisea by bromophenols, isocitrate lyase inhibitors, from the red alga Odonthalia corymbifera.
    Lee HS; Lee TH; Lee JH; Chae CS; Chung SC; Shin DS; Shin J; Oh KB
    J Agric Food Chem; 2007 Aug; 55(17):6923-8. PubMed ID: 17655246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging antifungal azoles and effects on Magnaporthe grisea.
    Mares D; Romagnoli C; Andreotti E; Forlani G; Guccione S; Vicentini CB
    Mycol Res; 2006 Jun; 110(Pt 6):686-96. PubMed ID: 16769209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea.
    Tendulkar SR; Saikumari YK; Patel V; Raghotama S; Munshi TK; Balaram P; Chattoo BB
    J Appl Microbiol; 2007 Dec; 103(6):2331-9. PubMed ID: 18045418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and homology modelling of sterol 14alpha-demethylase of Magnaporthe grisea and its interaction with azoles.
    Yang J; Zhang Q; Liao M; Xiao M; Xiao W; Yang S; Wan J
    Pest Manag Sci; 2009 Mar; 65(3):260-5. PubMed ID: 19152375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea.
    Xiong ZQ; Tu XR; Wei SJ; Huang L; Li XH; Lu H; Tu GQ
    Biotechnol Lett; 2013 Sep; 35(9):1475-9. PubMed ID: 23690041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cloning of a homologous gene of Magnaporthe grisea PMK1 type MAPK from Ustilaginoidea virens and functional identification by complement in Magnaporthe grisea corresponding mutant].
    Zhang Z; Du X; Chai R; Wang J; Qiu H; Mao X; Sun G
    Wei Sheng Wu Xue Bao; 2008 Nov; 48(11):1473-8. PubMed ID: 19149162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea.
    Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ
    Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development.
    Fujikawa T; Kuga Y; Yano S; Yoshimi A; Tachiki T; Abe K; Nishimura M
    Mol Microbiol; 2009 Aug; 73(4):553-70. PubMed ID: 19602150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional profiling analysis of Penicillium digitatum, the causal agent of citrus green mold, unravels an inhibited ergosterol biosynthesis pathway in response to citral.
    OuYang Q; Tao N; Jing G
    BMC Genomics; 2016 Aug; 17(1):599. PubMed ID: 27514516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea.
    Moreno AB; Martínez Del Pozo A; San Segundo B
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):883-95. PubMed ID: 16557374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.