BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25752576)

  • 1. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production.
    He S; Zhao J; Song S; He X; Minassian A; Zhou Y; Zhang J; Brulois K; Wang Y; Cabo J; Zandi E; Liang C; Jung JU; Zhang X; Feng P
    Mol Cell; 2015 Apr; 58(1):134-46. PubMed ID: 25752576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. γHV68 vGAT: a viral pseudoenzyme pimping for PAMPs.
    Kolakofsky D; Garcin D
    Mol Cell; 2015 Apr; 58(1):3-4. PubMed ID: 25839430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus.
    Spengler JR; Patel JR; Chakrabarti AK; Zivcec M; García-Sastre A; Spiropoulou CF; Bergeron É
    J Virol; 2015 Oct; 89(20):10219-29. PubMed ID: 26223644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation.
    Zhao J; Zeng Y; Xu S; Chen J; Shen G; Yu C; Knipe D; Yuan W; Peng J; Xu W; Zhang C; Xia Z; Feng P
    Cell Host Microbe; 2016 Dec; 20(6):770-784. PubMed ID: 27866900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of microRNA miR-526a by enterovirus inhibits RIG-I-dependent innate immune response.
    Xu C; He X; Zheng Z; Zhang Z; Wei C; Guan K; Hou L; Zhang B; Zhu L; Cao Y; Zhang Y; Cao Y; Ma S; Wang P; Zhang P; Xu Q; Ling Y; Yang X; Zhong H
    J Virol; 2014 Oct; 88(19):11356-68. PubMed ID: 25056901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling.
    van Kasteren PB; Beugeling C; Ninaber DK; Frias-Staheli N; van Boheemen S; García-Sastre A; Snijder EJ; Kikkert M
    J Virol; 2012 Jan; 86(2):773-85. PubMed ID: 22072774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DDX60 Is Involved in RIG-I-Dependent and Independent Antiviral Responses, and Its Function Is Attenuated by Virus-Induced EGFR Activation.
    Oshiumi H; Miyashita M; Okamoto M; Morioka Y; Okabe M; Matsumoto M; Seya T
    Cell Rep; 2015 May; 11(8):1193-207. PubMed ID: 25981042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-Specific Deamidation of RIG-I Reveals Collaborative Action between Viral and Cellular Deamidases in HSV-1 Lytic Replication.
    Huang H; Zhao J; Wang TY; Zhang S; Zhou Y; Rao Y; Qin C; Liu Y; Chen Y; Xia Z; Feng P
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication.
    Ingle H; Kumar S; Raut AA; Mishra A; Kulkarni DD; Kameyama T; Takaoka A; Akira S; Kumar H
    Sci Signal; 2015 Dec; 8(406):ra126. PubMed ID: 26645583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAVER1 is a coactivator of MDA5-mediated cellular antiviral response.
    Chen H; Li Y; Zhang J; Ran Y; Wei J; Yang Y; Shu HB
    J Mol Cell Biol; 2013 Apr; 5(2):111-9. PubMed ID: 23390309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylinositol-3-kinase (PI3K) is activated by influenza virus vRNA via the pathogen pattern receptor Rig-I to promote efficient type I interferon production.
    Hrincius ER; Dierkes R; Anhlan D; Wixler V; Ludwig S; Ehrhardt C
    Cell Microbiol; 2011 Dec; 13(12):1907-19. PubMed ID: 21899695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists.
    Chiang C; Beljanski V; Yin K; Olagnier D; Ben Yebdri F; Steel C; Goulet ML; DeFilippis VR; Streblow DN; Haddad EK; Trautmann L; Ross T; Lin R; Hiscott J
    J Virol; 2015 Aug; 89(15):8011-25. PubMed ID: 26018150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catcher in the RIG-I.
    Weber F
    Cytokine; 2015 Nov; 76(1):38-41. PubMed ID: 26168692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I.
    Cui S; Eisenächer K; Kirchhofer A; Brzózka K; Lammens A; Lammens K; Fujita T; Conzelmann KK; Krug A; Hopfner KP
    Mol Cell; 2008 Feb; 29(2):169-79. PubMed ID: 18243112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I.
    Schnell G; Loo YM; Marcotrigiano J; Gale M
    PLoS Pathog; 2012; 8(8):e1002839. PubMed ID: 22912574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection.
    Papon L; Oteiza A; Imaizumi T; Kato H; Brocchi E; Lawson TG; Akira S; Mechti N
    Virology; 2009 Oct; 393(2):311-8. PubMed ID: 19733381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Structural and functional views of the intracellular viral RNA sensor RIG-I].
    Go S; Yoneyama M; Fujita T
    Uirusu; 2008 Dec; 58(2):97-103. PubMed ID: 19374188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation and regulation of pathogen sensor RIG-I.
    Patel JR; García-Sastre A
    Cytokine Growth Factor Rev; 2014 Oct; 25(5):513-23. PubMed ID: 25212896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasmic STAT4 Promotes Antiviral Type I IFN Production by Blocking CHIP-Mediated Degradation of RIG-I.
    Zhao K; Zhang Q; Li X; Zhao D; Liu Y; Shen Q; Yang M; Wang C; Li N; Cao X
    J Immunol; 2016 Feb; 196(3):1209-17. PubMed ID: 26695369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RIG-I family RNA helicases: cytoplasmic sensor for antiviral innate immunity.
    Yoneyama M; Fujita T
    Cytokine Growth Factor Rev; 2007; 18(5-6):545-51. PubMed ID: 17683970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.