These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25752706)

  • 1. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.
    Lusa M; Bomberg M; Aromaa H; Knuutinen J; Lehto J
    J Environ Radioact; 2015 May; 143():110-122. PubMed ID: 25752706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the sorption of cesium in a nutrient-poor boreal bog.
    Lusa M; Bomberg M; Virtanen S; Lempinen J; Aromaa H; Knuutinen J; Lehto J
    J Environ Radioact; 2015 Sep; 147():22-32. PubMed ID: 26010098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog.
    Lusa M; Bomberg M; Aromaa H; Knuutinen J; Lehto J
    J Environ Radioact; 2015 Sep; 147():85-96. PubMed ID: 26048060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of radioiodide by Paenibacillus sp., Pseudomonas sp., Burkholderia sp. and Rhodococcus sp. isolated from a boreal nutrient-poor bog.
    Lusa M; Lehto J; Aromaa H; Knuutinen J; Bomberg M
    J Environ Sci (China); 2016 Jun; 44():26-37. PubMed ID: 27266299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilience of the sorption capacity of soil organic matter during drying-wetting cycle.
    Kim PG; Kwon JH
    Chemosphere; 2020 Mar; 242():125238. PubMed ID: 31896188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption and speciation of selenium in boreal forest soil.
    Söderlund M; Virkanen J; Holgersson S; Lehto J
    J Environ Radioact; 2016 Nov; 164():220-231. PubMed ID: 27521902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.
    Unno Y; Tsukada H; Takeda A; Takaku Y; Hisamatsu S
    J Environ Radioact; 2017 Apr; 169-170():131-136. PubMed ID: 28110200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.
    Seki M; Oikawa J; Taguchi T; Ohnuki T; Muramatsu Y; Sakamoto K; Amachi S
    Environ Sci Technol; 2013 Jan; 47(1):390-7. PubMed ID: 23194146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.
    Hu Q; Zhao P; Moran JE; Seaman JC
    J Contam Hydrol; 2005 Jul; 78(3):185-205. PubMed ID: 16019109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of clay content and wetting-and-drying on radiocaesium behaviour in a peat and a peaty podzol.
    Rosén K; Shand CA; Haak E; Cheshire MV
    Sci Total Environ; 2006 Sep; 368(2-3):795-803. PubMed ID: 16626782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dialysis experiments for assessing the pH-dependent sorption of sulfonamides to soil clay fractions.
    Anskjær GG; Krogh KA; Halling-Sørensen B
    Chemosphere; 2014 Jan; 95():116-23. PubMed ID: 24125718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes.
    Lew S; Glińska-Lewczuk K
    Sci Total Environ; 2018 Dec; 645():1201-1211. PubMed ID: 30248845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of the herbicide dichlobenil and the metabolite 2,6-dichlorobenzamide on soils and aquifer sediments.
    Clausen L; Larsen F; Albrechtsen HJ
    Environ Sci Technol; 2004 Sep; 38(17):4510-8. PubMed ID: 15461157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment.
    Ramírez-Guinart O; Salaberria A; Vidal M; Rigol A
    Environ Pollut; 2018 Mar; 234():439-447. PubMed ID: 29202422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Fe oxyhydroxide coating, illite clay, and peat moss in nanoscale titanium dioxide (nTiO
    Rastghalam ZS; Yan C; Shang J; Cheng T
    Environ Pollut; 2020 Feb; 257():113625. PubMed ID: 31806460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the sorption and desorption characteristics of Zn(II) on the surface soils of nuclear power plant sites in India using a radiotracer technique.
    Dahiya S; Shanwal AV; Hegde AG
    Chemosphere; 2005 Sep; 60(9):1253-61. PubMed ID: 16018896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pesticide runoff from greenhouse production.
    Roseth R; Haarstad K
    Water Sci Technol; 2010; 61(6):1373-81. PubMed ID: 20351415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.
    Li J; Zhou H; Wang Y; Xie X; Qian K
    J Contam Hydrol; 2017 Jun; 201():39-47. PubMed ID: 28495233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming.
    Droulia FE; Kati V; Giannopolitis CN
    J Environ Sci Health B; 2011; 46(5):404-10. PubMed ID: 21614714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.