These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25753304)

  • 1. Construction of an upconversion nanoprobe with few-atom silver nanoclusters as the energy acceptor.
    Xiao Y; Zeng L; Xia T; Wu Z; Liu Z
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5323-7. PubMed ID: 25753304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Förster resonance energy transfer-based biosensing platform with ultrasmall silver nanoclusters as energy acceptors.
    Xiao Y; Shu F; Wong KY; Liu Z
    Anal Chem; 2013 Sep; 85(18):8493-7. PubMed ID: 23981044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore.
    Li Z; Lv S; Wang Y; Chen S; Liu Z
    J Am Chem Soc; 2015 Mar; 137(9):3421-7. PubMed ID: 25707940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upconversion emission of fluorescent silver nanoclusters and in situ selective DNA biosensing.
    Cui Q; Shao Y; Ma K; Xu S; Wu F; Liu G
    Analyst; 2012 May; 137(10):2362-6. PubMed ID: 22479694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging.
    Cao H; Chen Z; Zheng H; Huang Y
    Biosens Bioelectron; 2014 Dec; 62():189-95. PubMed ID: 24999996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal-metal charge transfer vs strong coupling between surface plasmon and emitters.
    Chen Y; Yang T; Pan H; Yuan Y; Chen L; Liu M; Zhang K; Zhang S; Wu P; Xu J
    J Am Chem Soc; 2014 Feb; 136(5):1686-9. PubMed ID: 24437963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing.
    Gong L; Liu S; Song Y; Xie S; Guo Z; Xu J; Xu L
    J Mater Chem B; 2020 Jul; 8(27):5952-5961. PubMed ID: 32667025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods.
    Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.
    Zhang L; Sun Y; Liang YY; He JP; Zhao WW; Xu JJ; Chen HY
    Biosens Bioelectron; 2016 Nov; 85():930-934. PubMed ID: 27315518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile synthesis of fluorescent silver nanoclusters with human ferritin as a synthetic and interfacing ligand.
    Lee IH; Ahn B; Lee JM; Lee CS; Jung Y
    Analyst; 2015 May; 140(10):3543-50. PubMed ID: 25848642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging.
    Shang L; Azadfar N; Stockmar F; Send W; Trouillet V; Bruns M; Gerthsen D; Nienhaus GU
    Small; 2011 Sep; 7(18):2614-20. PubMed ID: 21809441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles.
    He E; Zheng H; Dong J; Gao W; Han Q; Li J; Hui L; Lu Y; Tian H
    Nanotechnology; 2014 Jan; 25(4):045603. PubMed ID: 24398901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols.
    Chen Z; Lu D; Cai Z; Dong C; Shuang S
    Luminescence; 2014 Nov; 29(7):722-7. PubMed ID: 24403131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters.
    Zhu J; Song X; Gao L; Li Z; Liu Z; Ding S; Zou S; He Y
    Biosens Bioelectron; 2014 Mar; 53():71-5. PubMed ID: 24121225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dumbbell-shaped metallothionein-templated silver nanoclusters with applications in cell imaging and Hg(2+) sensing.
    Hu S; Ye B; Yi X; Cao Z; Wu D; Shen C; Wang J
    Talanta; 2016 Aug; 155():272-7. PubMed ID: 27216684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon AgNP/DNA-TP dye nanosensing conjugate for biothiol probing in live cells.
    Liu M; Tang Q; Deng T; Yan H; Li J; Li Y; Yang R
    Analyst; 2014 Dec; 139(23):6185-91. PubMed ID: 25285333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging.
    Wang C; Xu L; Xu X; Cheng H; Sun H; Lin Q; Zhang C
    J Colloid Interface Sci; 2014 Feb; 416():274-9. PubMed ID: 24370431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols.
    Zhang S; Lin B; Yu Y; Cao Y; Guo M; Shui L
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 195():230-235. PubMed ID: 29414583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals.
    Zhang L; Liang RP; Xiao SJ; Bai JM; Zheng LL; Zhan L; Zhao XJ; Qiu JD; Huang CZ
    Talanta; 2014 Jan; 118():339-47. PubMed ID: 24274306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.
    Luo Z; Zheng K; Xie J
    Chem Commun (Camb); 2014 May; 50(40):5143-55. PubMed ID: 24266029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.