These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25753313)
1. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water. Ferkous H; Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Sep; 26():30-39. PubMed ID: 25753313 [TBL] [Abstract][Full Text] [Related]
2. Sonochemical degradation of naphthol blue black in water: Effect of operating parameters. Ferkous H; Hamdaoui O; Merouani S Ultrason Sonochem; 2015 Sep; 26():40-47. PubMed ID: 25843901 [TBL] [Abstract][Full Text] [Related]
3. Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water. Merouani S; Hamdaoui O; Boutamine Z; Rezgui Y; Guemini M Ultrason Sonochem; 2016 Jan; 28():382-392. PubMed ID: 26384922 [TBL] [Abstract][Full Text] [Related]
4. Persulfate-enhanced sonochemical degradation of naphthol blue black in water: Evidence of sulfate radical formation. Ferkous H; Merouani S; Hamdaoui O; Pétrier C Ultrason Sonochem; 2017 Jan; 34():580-587. PubMed ID: 27773283 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684 [TBL] [Abstract][Full Text] [Related]
6. The size of active bubbles for the production of hydrogen in sonochemical reaction field. Merouani S; Hamdaoui O Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777 [TBL] [Abstract][Full Text] [Related]
7. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency. Dehane A; Merouani S; Hamdaoui O; Alghyamah A Ultrason Sonochem; 2021 May; 73():105511. PubMed ID: 33812247 [TBL] [Abstract][Full Text] [Related]
8. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748 [TBL] [Abstract][Full Text] [Related]
9. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064 [TBL] [Abstract][Full Text] [Related]
10. New interpretation of the effects of argon-saturating gas toward sonochemical reactions. Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Mar; 23():37-45. PubMed ID: 25304684 [TBL] [Abstract][Full Text] [Related]
11. A method for predicting the number of active bubbles in sonochemical reactors. Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247 [TBL] [Abstract][Full Text] [Related]
12. Application of the general rate law model to the sonolytic degradation of nonvolatile organic pollutants in aqueous media. Hamdaoui O; Alghyamah A Ultrason Sonochem; 2023 Nov; 100():106606. PubMed ID: 37748263 [TBL] [Abstract][Full Text] [Related]
13. Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Kanthale P; Ashokkumar M; Grieser F Ultrason Sonochem; 2008 Feb; 15(2):143-50. PubMed ID: 17462939 [TBL] [Abstract][Full Text] [Related]
14. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study of single-bubble sonochemistry. Yasui K; Tuziuti T; Sivakumar M; Iida Y J Chem Phys; 2005 Jun; 122(22):224706. PubMed ID: 15974702 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulations for sonochemistry. Yasui K Ultrason Sonochem; 2021 Oct; 78():105728. PubMed ID: 34438317 [TBL] [Abstract][Full Text] [Related]
17. Impact of seawater salinity on the sonochemical removal of emerging organic pollutants. Hamdaoui O; Merouani S Environ Technol; 2020 Jul; 41(18):2305-2313. PubMed ID: 30585533 [TBL] [Abstract][Full Text] [Related]
18. Optimum bubble temperature for the sonochemical production of oxidants. Yasui K; Tuziuti T; Iida Y Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350 [TBL] [Abstract][Full Text] [Related]
19. Acoustic frequency and optimum sonochemical production at single and multi-bubble scales: A modeling answer to the scaling dilemma. Kerboua K; Hamdaoui O; Alghyamah A Ultrason Sonochem; 2021 Jan; 70():105341. PubMed ID: 32971392 [TBL] [Abstract][Full Text] [Related]
20. Production of O Radicals from Cavitation Bubbles under Ultrasound. Yasui K Molecules; 2022 Jul; 27(15):. PubMed ID: 35897962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]