BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25753645)

  • 1. Fungal β-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm.
    De Brucker K; Tan Y; Vints K; De Cremer K; Braem A; Verstraeten N; Michiels J; Vleugels J; Cammue BP; Thevissen K
    Antimicrob Agents Chemother; 2015; 59(6):3052-8. PubMed ID: 25753645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance.
    Nett J; Lincoln L; Marchillo K; Massey R; Holoyda K; Hoff B; VanHandel M; Andes D
    Antimicrob Agents Chemother; 2007 Feb; 51(2):510-20. PubMed ID: 17130296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms.
    Mitchell KF; Taff HT; Cuevas MA; Reinicke EL; Sanchez H; Andes DR
    Antimicrob Agents Chemother; 2013 Apr; 57(4):1918-20. PubMed ID: 23318790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small subpopulation of blastospores in candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes.
    Khot PD; Suci PA; Miller RL; Nelson RD; Tyler BJ
    Antimicrob Agents Chemother; 2006 Nov; 50(11):3708-16. PubMed ID: 16966398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans.
    Vediyappan G; Rossignol T; d'Enfert C
    Antimicrob Agents Chemother; 2010 May; 54(5):2096-111. PubMed ID: 20194705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185.
    Tan Y; Ma S; Leonhard M; Moser D; Schneider-Stickler B
    Int J Biol Macromol; 2018 Mar; 108():942-946. PubMed ID: 29104052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation.
    Nett JE; Sanchez H; Cain MT; Ross KM; Andes DR
    Eukaryot Cell; 2011 Dec; 10(12):1660-9. PubMed ID: 21666076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms.
    Nailis H; Vandenbosch D; Deforce D; Nelis HJ; Coenye T
    Res Microbiol; 2010 May; 161(4):284-92. PubMed ID: 20170727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersal of single and mixed non-albicans Candida species biofilms by β-1,3-glucanase in vitro.
    Tan Y; Leonhard M; Ma S; Moser D; Schneider-Stickler B
    Microb Pathog; 2017 Dec; 113():342-347. PubMed ID: 29101060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for Determination of the Persister Subpopulation in Candida Albicans Biofilms.
    De Brucker K; De Cremer K; Cammue BP; Thevissen K
    Methods Mol Biol; 2016; 1333():67-72. PubMed ID: 26468100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro efficacies of caspofungin or micafungin catheter lock solutions on Candida albicans biofilm growth.
    Cateau E; Rodier MH; Imbert C
    J Antimicrob Chemother; 2008 Jul; 62(1):153-5. PubMed ID: 18407917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Candida albicans in dual-species biofilms with antifungal treatment reduces Staphylococcus aureus and MRSA in vitro.
    Luo Y; McAuley DF; Fulton CR; Sá Pessoa J; McMullan R; Lundy FT
    PLoS One; 2021; 16(4):e0249547. PubMed ID: 33831044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for new strategies against polymicrobial biofilm infections: guanylated polymethacrylates kill mixed fungal/bacterial biofilms.
    Qu Y; Locock K; Verma-Gaur J; Hay ID; Meagher L; Traven A
    J Antimicrob Chemother; 2016 Feb; 71(2):413-21. PubMed ID: 26490013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix.
    Kong EF; Tsui C; Kucharíková S; Andes D; Van Dijck P; Jabra-Rizk MA
    mBio; 2016 Oct; 7(5):. PubMed ID: 27729510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro method to study antifungal perfusion in Candida biofilms.
    Samaranayake YH; Ye J; Yau JY; Cheung BP; Samaranayake LP
    J Clin Microbiol; 2005 Feb; 43(2):818-25. PubMed ID: 15695686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penetration of Candida biofilms by antifungal agents.
    Al-Fattani MA; Douglas LJ
    Antimicrob Agents Chemother; 2004 Sep; 48(9):3291-7. PubMed ID: 15328087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.
    Kurakado S; Takatori K; Sugita T
    Jpn J Infect Dis; 2017 Sep; 70(5):490-494. PubMed ID: 28367877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutibacterium acnes protects Candida albicans from the effect of micafungin in biofilms.
    Bernard C; Renaudeau N; Mollichella ML; Quellard N; Girardot M; Imbert C
    Int J Antimicrob Agents; 2018 Dec; 52(6):942-946. PubMed ID: 30144502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.
    Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H
    Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.