BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25754041)

  • 41. Structure of the α-crystallin domain from the redox-sensitive chaperone, HSPB1.
    Rajagopal P; Liu Y; Shi L; Clouser AF; Klevit RE
    J Biomol NMR; 2015 Oct; 63(2):223-8. PubMed ID: 26243512
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Small Heat Shock Proteins and Human Neurodegenerative Diseases.
    Muranova LK; Ryzhavskaya AS; Sudnitsyna MV; Shatov VM; Gusev NB
    Biochemistry (Mosc); 2019 Nov; 84(11):1256-1267. PubMed ID: 31760916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation.
    van Ham TJ; Esposito A; Kumita JR; Hsu ST; Kaminski Schierle GS; Kaminski CF; Dobson CM; Nollen EA; Bertoncini CW
    J Mol Biol; 2010 Jan; 395(3):627-42. PubMed ID: 19891973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of amyloid-β protein precursor expression by HspB1.
    Conway M; Nafar F; Straka T; Mearow K
    J Alzheimers Dis; 2014; 42(2):435-50. PubMed ID: 24898650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The N terminus of the small heat shock protein HSPB7 drives its polyQ aggregation-suppressing activity.
    Wu D; Vonk JJ; Salles F; Vonk D; Haslbeck M; Melki R; Bergink S; Kampinga HH
    J Biol Chem; 2019 Jun; 294(25):9985-9994. PubMed ID: 31097540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell.
    Arrigo AP
    Cell Stress Chaperones; 2017 Jul; 22(4):517-529. PubMed ID: 28144778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity.
    Jovcevski B; Kelly MA; Rote AP; Berg T; Gastall HY; Benesch JL; Aquilina JA; Ecroyd H
    Chem Biol; 2015 Feb; 22(2):186-95. PubMed ID: 25699602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of a linker library with widely controllable flexibility for fusion protein design.
    Li G; Huang Z; Zhang C; Dong BJ; Guo RH; Yue HW; Yan LT; Xing XH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):215-25. PubMed ID: 26394862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response.
    Dierick I; Irobi J; Janssens S; Theuns J; Lemmens R; Jacobs A; Corsmit E; Hersmus N; Van Den Bosch L; Robberecht W; De Jonghe P; Van Broeckhoven C; Timmerman V
    Hum Mutat; 2007 Aug; 28(8):830. PubMed ID: 17623484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional and structural characterization of HspB1/Hsp27 from Chinese hamster ovary cells.
    Sha E; Nakamura M; Ankai K; Yamamoto YY; Oka T; Yohda M
    FEBS Open Bio; 2019 Oct; 9(10):1826-1834. PubMed ID: 31441240
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Local unfolding of the HSP27 monomer regulates chaperone activity.
    Alderson TR; Roche J; Gastall HY; Dias DM; Pritišanac I; Ying J; Bax A; Benesch JLP; Baldwin AJ
    Nat Commun; 2019 Mar; 10(1):1068. PubMed ID: 30842409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quaternary structure of human small heat shock protein HSPB6 (Hsp20) in crowded media modeled by trimethylamine N-oxide (TMAO): Effect of protein phosphorylation.
    Sluchanko NN; Chebotareva NA; Gusev NB
    Biochimie; 2015 Jan; 108():68-75. PubMed ID: 25446653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methylglyoxal and Small Heat Shock Proteins.
    Sudnitsyna MV; Gusev NB
    Biochemistry (Mosc); 2017 Jul; 82(7):751-759. PubMed ID: 28918740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer.
    Basak S; Sakia N; Dougherty L; Guo Z; Wu F; Mindlin F; Lary JW; Cole JL; Ding F; Bowen ME
    J Mol Biol; 2021 Mar; 433(5):166793. PubMed ID: 33388290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering.
    Arai R; Wriggers W; Nishikawa Y; Nagamune T; Fujisawa T
    Proteins; 2004 Dec; 57(4):829-38. PubMed ID: 15390267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Cellular expression of (R127W)HSPB1 and its co-localization with neurofilament light chain].
    Zhang RX; Yang X; Zi XH; Li XB; Xia K; Liu T; Liu SM; Li L; Zhan YJ; Li L; Pan Q; Tang BS
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2011 Oct; 28(5):496-500. PubMed ID: 21983720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits.
    Li J; Gao X; Joss L; Rechsteiner M
    J Mol Biol; 2000 Jun; 299(3):641-54. PubMed ID: 10835274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peptide aptamers: tools to negatively or positively modulate HSPB1(27) function.
    Gibert B; Simon S; Dimitrova V; Diaz-Latoud C; Arrigo AP
    Philos Trans R Soc Lond B Biol Sci; 2013 May; 368(1617):20120075. PubMed ID: 23530261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HSPB1 Enhances SIRT2-Mediated G6PD Activation and Promotes Glioma Cell Proliferation.
    Ye H; Huang H; Cao F; Chen M; Zheng X; Zhan R
    PLoS One; 2016; 11(10):e0164285. PubMed ID: 27711253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of the cysteine residue in the chaperone and anti-apoptotic functions of human Hsp27.
    Pasupuleti N; Gangadhariah M; Padmanabha S; Santhoshkumar P; Nagaraj RH
    J Cell Biochem; 2010 May; 110(2):408-19. PubMed ID: 20225272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.