These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25754125)

  • 1. Critical evidence for the prediction error theory in associative learning.
    Terao K; Matsumoto Y; Mizunami M
    Sci Rep; 2015 Mar; 5():8929. PubMed ID: 25754125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of dopamine neurons in mediating the prediction error in aversive learning in insects.
    Terao K; Mizunami M
    Sci Rep; 2017 Oct; 7(1):14694. PubMed ID: 29089641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a Prediction Error Theory to Pavlovian Conditioning in an Insect.
    Mizunami M; Terao K; Alvarez B
    Front Psychol; 2018; 9():1272. PubMed ID: 30083125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous recovery from overexpectation in an insect.
    Terao K; Matsumoto Y; Álvarez B; Mizunami M
    Sci Rep; 2022 Jun; 12(1):9827. PubMed ID: 35701655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets.
    Mizunami M; Matsumoto Y
    Front Physiol; 2017; 8():1027. PubMed ID: 29311961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral determinants in the expression of the Kamin blocking effect: Implications for associative learning theory.
    Aggarwal M; Wickens JR
    Neurosci Biobehav Rev; 2021 May; 124():16-34. PubMed ID: 33497781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.
    Li SS; McNally GP
    Neurobiol Learn Mem; 2014 Feb; 108():14-21. PubMed ID: 23684989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nucleus accumbens and inhibition in the ventral tegmental area play a causal role in the Kamin blocking effect.
    Aggarwal M; Akamine Y; Liu AW; Wickens JR
    Eur J Neurosci; 2020 Aug; 52(3):3087-3109. PubMed ID: 32250479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine responses comply with basic assumptions of formal learning theory.
    Waelti P; Dickinson A; Schultz W
    Nature; 2001 Jul; 412(6842):43-8. PubMed ID: 11452299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect.
    Mizunami M; Unoki S; Mori Y; Hirashima D; Hatano A; Matsumoto Y
    BMC Biol; 2009 Aug; 7():46. PubMed ID: 19653886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of timing and prediction error learning.
    Kirkpatrick K
    Behav Processes; 2014 Jan; 101():135-45. PubMed ID: 23962670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study.
    Unoki S; Matsumoto Y; Mizunami M
    Eur J Neurosci; 2005 Sep; 22(6):1409-16. PubMed ID: 16190895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural substrates of appetitive and aversive prediction error.
    Iordanova MD; Yau JO; McDannald MA; Corbit LH
    Neurosci Biobehav Rev; 2021 Apr; 123():337-351. PubMed ID: 33453307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why the carrot is more effective than the stick: different dynamics of punishment memory and reward memory and its possible biological basis.
    Nakatani Y; Matsumoto Y; Mori Y; Hirashima D; Nishino H; Arikawa K; Mizunami M
    Neurobiol Learn Mem; 2009 Oct; 92(3):370-80. PubMed ID: 19435611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Blockade of Dopamine Transients Prevents Learning Induced by Changes in Reward Features.
    Chang CY; Gardner M; Di Tillio MG; Schoenbaum G
    Curr Biol; 2017 Nov; 27(22):3480-3486.e3. PubMed ID: 29103933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and modeling of neural processes underlying sensory preconditioning.
    Matsumoto Y; Hirashima D; Mizunami M
    Neurobiol Learn Mem; 2013 Mar; 101():103-13. PubMed ID: 23380289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pupil dilation indicates the coding of past prediction errors: Evidence for attentional learning theory.
    Koenig S; Uengoer M; Lachnit H
    Psychophysiology; 2018 Apr; 55(4):. PubMed ID: 29023832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human neural learning depends on reward prediction errors in the blocking paradigm.
    Tobler PN; O'doherty JP; Dolan RJ; Schultz W
    J Neurophysiol; 2006 Jan; 95(1):301-10. PubMed ID: 16192329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning.
    Unoki S; Matsumoto Y; Mizunami M
    Eur J Neurosci; 2006 Oct; 24(7):2031-8. PubMed ID: 17067299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.