These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25754405)

  • 1. Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots.
    Zhang Y; Wang Y; Taylor JL; Jiang Z; Zhang S; Mei F; Wu Y; Wu P; Ni J
    J Exp Bot; 2015 May; 66(9):2535-45. PubMed ID: 25754405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress.
    Nath M; Yadav S; Kumar Sahoo R; Passricha N; Tuteja R; Tuteja N
    J Plant Physiol; 2016 Feb; 191():1-11. PubMed ID: 26687010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enlightenment on the aequorin-based platform for screening Arabidopsis stress sensory channels related to calcium signaling.
    Yu Z; Taylor JL; He Y; Ni J
    Plant Signal Behav; 2015; 10(11):e1057366. PubMed ID: 26336841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture.
    Nguyen HT; Umemura K; Kawano T
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1546-54. PubMed ID: 27149194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Synthesis of Ascorbic Acid in Rice Roots Plays an Important Role in the Salt Tolerance of Rice by Scavenging ROS.
    Wang Y; Zhao H; Qin H; Li Z; Liu H; Wang J; Zhang H; Quan R; Huang R; Zhang Z
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of Ca2+ dynamics using a ubiquitin-10 promoter-driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca2+ responses in Arabidopsis and rice (Oryza sativa) roots.
    Behera S; Wang N; Zhang C; Schmitz-Thom I; Strohkamp S; Schültke S; Hashimoto K; Xiong L; Kudla J
    New Phytol; 2015 Apr; 206(2):751-60. PubMed ID: 25641067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root.
    Kiegle E; Moore CA; Haseloff J; Tester MA; Knight MR
    Plant J; 2000 Jul; 23(2):267-78. PubMed ID: 10929120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative feedback regulation of microbe-associated molecular pattern-induced cytosolic Ca2+ transients by protein phosphorylation.
    Kurusu T; Hamada H; Sugiyama Y; Yagala T; Kadota Y; Furuichi T; Hayashi T; Umemura K; Komatsu S; Miyao A; Hirochika H; Kuchitsu K
    J Plant Res; 2011 May; 124(3):415-24. PubMed ID: 21063744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.
    Huda KM; Banu MS; Garg B; Tula S; Tuteja R; Tuteja N
    Plant J; 2013 Dec; 76(6):997-1015. PubMed ID: 24128296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.
    Yang C; Ma B; He SJ; Xiong Q; Duan KX; Yin CC; Chen H; Lu X; Chen SY; Zhang JS
    Plant Physiol; 2015 Sep; 169(1):148-65. PubMed ID: 25995326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice.
    Wang X; Zhang MM; Wang YJ; Gao YT; Li R; Wang GF; Li WQ; Liu WT; Chen KM
    Physiol Plant; 2016 Apr; 156(4):421-43. PubMed ID: 26400148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca(2+) Transients in Plants.
    Trempel F; Ranf S; Scheel D; Lee J
    Methods Mol Biol; 2016; 1398():331-44. PubMed ID: 26867636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock-induced biphasic Ca(2+) signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.).
    Wu HC; Luo DL; Vignols F; Jinn TL
    Plant Cell Environ; 2012 Sep; 35(9):1543-57. PubMed ID: 22428987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice.
    Guan QJ; Ma HY; Wang ZJ; Wang ZY; Bu QY; Liu SK
    BMC Genomics; 2016 Feb; 17():142. PubMed ID: 26920613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice.
    Wang S; Liu H; Zhang Y; Xin H
    Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice K+ uptake channel OsAKT1 is sensitive to salt stress.
    Fuchs I; Stölzle S; Ivashikina N; Hedrich R
    Planta; 2005 May; 221(2):212-21. PubMed ID: 15599592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice.
    Li X; Hou S; Gao Q; Zhao P; Chen S; Qi D; Lee BH; Cheng L; Liu G
    Plant Cell Physiol; 2013 Jul; 54(7):1172-85. PubMed ID: 23695503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions.
    Yamauchi T; Yoshioka M; Fukazawa A; Mori H; Nishizawa NK; Tsutsumi N; Yoshioka H; Nakazono M
    Plant Cell; 2017 Apr; 29(4):775-790. PubMed ID: 28351990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice.
    Yu C; Liu Y; Zhang A; Su S; Yan A; Huang L; Ali I; Liu Y; Forde BG; Gan Y
    PLoS One; 2015; 10(8):e0135196. PubMed ID: 26258667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges.
    Chen G; Hu Q; Luo L; Yang T; Zhang S; Hu Y; Yu L; Xu G
    Plant Cell Environ; 2015 Dec; 38(12):2747-65. PubMed ID: 26046301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.