BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 25754642)

  • 21. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Downregulation of cortical inhibition mediates ocular dominance plasticity during the critical period.
    Ma WP; Li YT; Tao HW
    J Neurosci; 2013 Jul; 33(27):11276-80. PubMed ID: 23825430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embryonic interneurons from the medial, but not the caudal ganglionic eminence trigger ocular dominance plasticity in adult mice.
    Isstas M; Teichert M; Bolz J; Lehmann K
    Brain Struct Funct; 2017 Jan; 222(1):539-547. PubMed ID: 27165433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in the Mouse Visual Cortex.
    Levine JN; Chen H; Gu Y; Cang J
    J Neurosci; 2017 Jun; 37(24):5822-5833. PubMed ID: 28500220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinctive features of adult ocular dominance plasticity.
    Sato M; Stryker MP
    J Neurosci; 2008 Oct; 28(41):10278-86. PubMed ID: 18842887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity.
    Lazarus MS; Huang ZJ
    J Neurophysiol; 2011 Aug; 106(2):775-87. PubMed ID: 21613595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transplanted Cells Are Essential for the Induction But Not the Expression of Cortical Plasticity.
    Hoseini MS; Rakela B; Flores-Ramirez Q; Hasenstaub AR; Alvarez-Buylla A; Stryker MP
    J Neurosci; 2019 Sep; 39(38):7529-7538. PubMed ID: 31391263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical period for inhibitory plasticity in rodent binocular V1.
    Maffei A; Lambo ME; Turrigiano GG
    J Neurosci; 2010 Mar; 30(9):3304-9. PubMed ID: 20203190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex.
    He HY; Hodos W; Quinlan EM
    J Neurosci; 2006 Mar; 26(11):2951-5. PubMed ID: 16540572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bidirectional plasticity in fast-spiking GABA circuits by visual experience.
    Yazaki-Sugiyama Y; Kang S; Câteau H; Fukai T; Hensch TK
    Nature; 2009 Nov; 462(7270):218-21. PubMed ID: 19907494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex.
    Ferrer C; Hsieh H; Wollmuth LP
    J Neurophysiol; 2018 Dec; 120(6):3063-3076. PubMed ID: 30303753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific GABAA circuits for visual cortical plasticity.
    Fagiolini M; Fritschy JM; Löw K; Möhler H; Rudolph U; Hensch TK
    Science; 2004 Mar; 303(5664):1681-3. PubMed ID: 15017002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex.
    Sawtell NB; Frenkel MY; Philpot BD; Nakazawa K; Tonegawa S; Bear MF
    Neuron; 2003 Jun; 38(6):977-85. PubMed ID: 12818182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different mechanisms for loss and recovery of binocularity in the visual cortex.
    Liao DS; Mower AF; Neve RL; Sato-Bigbee C; Ramoa AS
    J Neurosci; 2002 Oct; 22(20):9015-23. PubMed ID: 12388608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ocular dominance plasticity: A binocular combination task finds no cumulative effect with repeated patching.
    Min SH; Baldwin AS; Hess RF
    Vision Res; 2019 Aug; 161():36-42. PubMed ID: 31194984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of visual cortex plasticity by dark exposure.
    Erchova I; Vasalauskaite A; Longo V; Sengpiel F
    Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1715):. PubMed ID: 28093553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G; Olcese U; Medini P
    PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning excitatory-inhibitory neuronal assemblies in recurrent networks.
    Mackwood O; Naumann LB; Sprekeler H
    Elife; 2021 Apr; 10():. PubMed ID: 33900199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prior experience enhances plasticity in adult visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Nat Neurosci; 2006 Jan; 9(1):127-32. PubMed ID: 16327785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monocular Perceptual Deprivation from Interocular Suppression Temporarily Imbalances Ocular Dominance.
    Kim HW; Kim CY; Blake R
    Curr Biol; 2017 Mar; 27(6):884-889. PubMed ID: 28262490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.