BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 25754642)

  • 41. A micro-architecture for binocular disparity and ocular dominance in visual cortex.
    Kara P; Boyd JD
    Nature; 2009 Apr; 458(7238):627-31. PubMed ID: 19158677
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporary monocular occlusion facilitates binocular fusion during rivalry.
    Sheynin Y; Proulx S; Hess RF
    J Vis; 2019 May; 19(5):23. PubMed ID: 31136647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Host interneurons mediate plasticity reactivated by embryonic inhibitory cell transplantation in mouse visual cortex.
    Zheng X; Salinas KJ; Velez DXF; Nakayama T; Lin X; Banerjee D; Xu X; Gandhi SP
    Nat Commun; 2021 Feb; 12(1):862. PubMed ID: 33558487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB.
    Pham TA; Graham SJ; Suzuki S; Barco A; Kandel ER; Gordon B; Lickey ME
    Learn Mem; 2004; 11(6):738-47. PubMed ID: 15537732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasticity of binocularity and visual acuity are differentially limited by nogo receptor.
    Stephany CÉ; Chan LL; Parivash SN; Dorton HM; Piechowicz M; Qiu S; McGee AW
    J Neurosci; 2014 Aug; 34(35):11631-40. PubMed ID: 25164659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Cortical Mechanisms Underlying Ocular Dominance Plasticity in Adults are Not Orientationally Selective.
    Wang Y; Yao Z; He Z; Zhou J; Hess RF
    Neuroscience; 2017 Dec; 367():121-126. PubMed ID: 29111362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thalamic inhibition regulates critical-period plasticity in visual cortex and thalamus.
    Sommeijer JP; Ahmadlou M; Saiepour MH; Seignette K; Min R; Heimel JA; Levelt CN
    Nat Neurosci; 2017 Dec; 20(12):1715-1721. PubMed ID: 29184199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
    Fischer QS; Aleem S; Zhou H; Pham TA
    Learn Mem; 2007 Sep; 14(9):573-80. PubMed ID: 17761542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Virally mediated knock-down of NR2 subunits ipsilateral to the deprived eye blocks ocular dominance plasticity.
    Cao Z; Liu L; Lickey M; Graves A; Pham T; Gordon B
    Exp Brain Res; 2007 Feb; 177(1):64-77. PubMed ID: 16944113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Delayed plasticity of inhibitory neurons in developing visual cortex.
    Gandhi SP; Yanagawa Y; Stryker MP
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16797-802. PubMed ID: 18940923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex.
    Khibnik LA; Cho KK; Bear MF
    Neuron; 2010 May; 66(4):493-500. PubMed ID: 20510854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-modal restoration of ocular dominance plasticity in adult mice.
    Teichert M; Isstas M; Zhang Y; Bolz J
    Eur J Neurosci; 2018 Jun; 47(11):1375-1384. PubMed ID: 29761580
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity.
    Larimer P; Spatazza J; Espinosa JS; Tang Y; Kaneko M; Hasenstaub AR; Stryker MP; Alvarez-Buylla A
    Cell Rep; 2016 Aug; 16(5):1391-1404. PubMed ID: 27425623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity.
    van Versendaal D; Rajendran R; Saiepour MH; Klooster J; Smit-Rigter L; Sommeijer JP; De Zeeuw CI; Hofer SB; Heimel JA; Levelt CN
    Neuron; 2012 Apr; 74(2):374-83. PubMed ID: 22542189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes.
    Litwin-Kumar A; Rosenbaum R; Doiron B
    J Neurophysiol; 2016 Mar; 115(3):1399-409. PubMed ID: 26740531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.