BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25754725)

  • 1. Efficient transposition of the youngest miniature inverted repeat transposable element family of yellow fever mosquito in yeast.
    Fattash I; Lee CN; Mo K; Yang G
    FEBS J; 2015 May; 282(10):1829-40. PubMed ID: 25754725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/Mariner element in the yellow fever mosquito.
    Yang G; Fattash I; Lee CN; Liu K; Cavinder B
    Genome Biol Evol; 2013; 5(10):1937-48. PubMed ID: 24068652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE.
    Yang G; Nagel DH; Feschotte C; Hancock CN; Wessler SR
    Science; 2009 Sep; 325(5946):1391-4. PubMed ID: 19745152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature inverted-repeat transposable elements: discovery, distribution, and activity.
    Fattash I; Rooke R; Wong A; Hui C; Luu T; Bhardwaj P; Yang G
    Genome; 2013 Sep; 56(9):475-86. PubMed ID: 24168668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana.
    Yang G; Zhang F; Hancock CN; Wessler SR
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10962-7. PubMed ID: 17578919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rice Stowaway MITE for gene transfer in yeast.
    Fattash I; Bhardwaj P; Hui C; Yang G
    PLoS One; 2013; 8(5):e64135. PubMed ID: 23704977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla).
    Zhou M; Tao G; Pi P; Zhu Y; Bai Y; Meng X
    Planta; 2016 Oct; 244(4):775-87. PubMed ID: 27160169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti.
    Tu Z
    Mol Biol Evol; 2000 Sep; 17(9):1313-25. PubMed ID: 10958848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes.
    Ye C; Ji G; Liang C
    Sci Rep; 2016 Jan; 6():19688. PubMed ID: 26795595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification dynamics of miniature inverted-repeat transposable elements and their impact on rice trait variability.
    Castanera R; Vendrell-Mir P; Bardil A; Carpentier MC; Panaud O; Casacuberta JM
    Plant J; 2021 Jul; 107(1):118-135. PubMed ID: 33866641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA sequence requirements for hobo transposable element transposition in Drosophila melanogaster.
    Kim YJ; Hice RH; O'Brochta DA; Atkinson PW
    Genetica; 2011 Aug; 139(8):985-97. PubMed ID: 21805320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE: consequences for the transposition mechanism of MITEs.
    Loot C; Santiago N; Sanz A; Casacuberta JM
    Nucleic Acids Res; 2006; 34(18):5238-46. PubMed ID: 17003053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel MITEs (miniature inverted-repeat transposable elements) in Coxiella burnetii: implications for protein and small RNA evolution.
    Wachter S; Raghavan R; Wachter J; Minnick MF
    BMC Genomics; 2018 Apr; 19(1):247. PubMed ID: 29642859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent amplification of microsatellite-associated miniature inverted-repeat transposable elements in the pineapple genome.
    Lin L; Sharma A; Yu Q
    BMC Plant Biol; 2021 Sep; 21(1):424. PubMed ID: 34537020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MUSTv2: An Improved De Novo Detection Program for Recently Active Miniature Inverted Repeat Transposable Elements (MITEs).
    Ge R; Mai G; Zhang R; Wu X; Wu Q; Zhou F
    J Integr Bioinform; 2017 Aug; 14(3):. PubMed ID: 28796642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MITE
    Adams FG; Brown MH
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MDM-1 and MDM-2: two mutator-derived MITE families in rice.
    Yang G; Hall TC
    J Mol Evol; 2003 Mar; 56(3):255-64. PubMed ID: 12612829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase.
    Dufresne M; Hua-Van A; El Wahab HA; Ben M'Barek S; Vasnier C; Teysset L; Kema GH; Daboussi MJ
    Genetics; 2007 Jan; 175(1):441-52. PubMed ID: 17179071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
    Nouroz F; Noreen S; Heslop-Harrison JS
    Mol Genet Genomics; 2015 Dec; 290(6):2297-312. PubMed ID: 26129767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.