These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25754862)

  • 1. Coexistence of metallic and insulating-like states in graphene.
    Wu F; Huang J; Li Q; Deng K; Kan E
    Sci Rep; 2015 Mar; 5():8974. PubMed ID: 25754862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast dynamics of massive dirac fermions in bilayer graphene.
    Ulstrup S; Johannsen JC; Cilento F; Miwa JA; Crepaldi A; Zacchigna M; Cacho C; Chapman R; Springate E; Mammadov S; Fromm F; Raidel C; Seyller T; Parmigiani F; Grioni M; King PD; Hofmann P
    Phys Rev Lett; 2014 Jun; 112(25):257401. PubMed ID: 25014829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering.
    Li X; Dai Y; Ma Y; Han S; Huang B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4230-5. PubMed ID: 24452306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the nature of the gap in semiconducting graphene.
    Prestigiacomo JC; Nath A; Osofsky MS; Hernández SC; Wheeler VD; Walton SG; Gaskill DK
    Sci Rep; 2017 Feb; 7():41713. PubMed ID: 28181521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene.
    Kim KS; Walter AL; Moreschini L; Seyller T; Horn K; Rotenberg E; Bostwick A
    Nat Mater; 2013 Oct; 12(10):887-92. PubMed ID: 23892785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-induced bandgap opening in epitaxial graphene.
    Zhou SY; Gweon GH; Fedorov AV; First PN; de Heer WA; Lee DH; Guinea F; Castro Neto AH; Lanzara A
    Nat Mater; 2007 Oct; 6(10):770-5. PubMed ID: 17828279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving ultrahigh carrier mobilities and opening the band gap in two-dimensional Si
    Singh D; Gupta SK; Sonvane Y; Hussain T; Ahuja R
    Phys Chem Chem Phys; 2018 Aug; 20(33):21716-21723. PubMed ID: 30102304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable electronic properties induced by a defect-substrate in graphene/BC3 heterobilayers.
    Li SS; Zhang CW; Ji WX; Li F; Wang PJ
    Phys Chem Chem Phys; 2014 Nov; 16(41):22861-6. PubMed ID: 25241677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band gap engineering for single-layer graphene by using slow Li(+) ions.
    Ryu M; Lee P; Kim J; Park H; Chung J
    Nanotechnology; 2016 Aug; 27(31):31LT03. PubMed ID: 27345294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting a graphene-like WB
    Zhang C; Jiao Y; Ma F; Bottle S; Zhao M; Chen Z; Du A
    Phys Chem Chem Phys; 2017 Feb; 19(7):5449-5453. PubMed ID: 28165108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band gap opening of graphene by doping small boron nitride domains.
    Fan X; Shen Z; Liu AQ; Kuo JL
    Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XH/π (X = C, Si) Interactions in Graphene and Silicene: Weak in Strength, Strong in Tuning Band Structures.
    Li Y; Chen Z
    J Phys Chem Lett; 2013 Jan; 4(2):269-75. PubMed ID: 26283433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferroelectric surface induced electron doping in a zigzag graphene nanoribbon.
    Belletti GD; Dalosto SD; Tinte S
    J Phys Condens Matter; 2016 Nov; 28(43):435002. PubMed ID: 27603305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peierls-type instability and tunable band gap in functionalized graphene.
    Abanin DA; Shytov AV; Levitov LS
    Phys Rev Lett; 2010 Aug; 105(8):086802. PubMed ID: 20868123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures and chemical properties of silicene: unlike graphene.
    Jose D; Datta A
    Acc Chem Res; 2014 Feb; 47(2):593-602. PubMed ID: 24215179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.
    Kou L; Hu F; Yan B; Frauenheim T; Chen C
    Nanoscale; 2014 Jul; 6(13):7474-9. PubMed ID: 24881864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-gap opening and quenching in graphene under periodic external potentials.
    Zhang A; Dai Z; Shi L; Feng YP; Zhang C
    J Chem Phys; 2010 Dec; 133(22):224705. PubMed ID: 21171694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene on hexagonal boron nitride.
    Yankowitz M; Xue J; LeRoy BJ
    J Phys Condens Matter; 2014 Jul; 26(30):303201. PubMed ID: 24994551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy induced localization of pseudo-relativistic spin states in graphene double quantum wire structures.
    Villegas CE; Tavares MR; Marques GE
    Nanotechnology; 2010 Sep; 21(36):365401. PubMed ID: 20705968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.