BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25755081)

  • 1. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.
    Aguirre JS; de Fernando GG; Hierro E; Hospital XF; Ordóñez JA; Fernández M
    Int J Food Microbiol; 2015 Jun; 202():20-6. PubMed ID: 25755081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the effects of E-beam irradiation and heat treatment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells.
    Aguirre JS; Ordóñez JA; García de Fernando GD
    Int J Food Microbiol; 2012 Feb; 153(3):444-52. PubMed ID: 22225985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevant factors affecting microbial surface decontamination by pulsed light.
    Levy C; Aubert X; Lacour B; Carlin F
    Int J Food Microbiol; 2012 Jan; 152(3):168-74. PubMed ID: 21924512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of Bacillus subtilis spores by combined pulsed light and thermal treatments.
    Artíguez ML; Martínez de Marañón I
    Int J Food Microbiol; 2015 Dec; 214():31-37. PubMed ID: 26225755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the influence of electron beam irradiation on the heat resistance of Bacillus cereus spores.
    Valero M; Sarrías JA; Alvarez D; Salmerón MC
    Food Microbiol; 2006 Jun; 23(4):367-71. PubMed ID: 16943026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of food pathogen Bacillus cereus by photosensitization in vitro and on the surface of packaging material.
    Luksiene Z; Buchovec I; Paskeviciute E
    J Appl Microbiol; 2009 Dec; 107(6):2037-46. PubMed ID: 19849812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll.
    Byrne B; Dunne G; Bolton DJ
    Food Microbiol; 2006 Dec; 23(8):803-8. PubMed ID: 16943086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs).
    Membré JM; Kan-King-Yu D; Blackburn Cde W
    Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial decontamination of onion powder using microwave-powered cold plasma treatments.
    Kim JE; Oh YJ; Won MY; Lee KS; Min SC
    Food Microbiol; 2017 Apr; 62():112-123. PubMed ID: 27889137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.
    Warda AK; den Besten HM; Sha N; Abee T; Nierop Groot MN
    Int J Food Microbiol; 2015 May; 201():27-34. PubMed ID: 25727186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat.
    Coleman WH; Zhang P; Li YQ; Setlow P
    Lett Appl Microbiol; 2010 May; 50(5):507-14. PubMed ID: 20302598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus.
    Luu-Thi H; Khadka DB; Michiels CW
    Int J Food Microbiol; 2014 Oct; 189():183-8. PubMed ID: 25171111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of Bacillus subtilis spores at various germination and outgrowth stages using intense pulsed light.
    Jo HL; Hwang HJ; Chung MS
    Food Microbiol; 2019 Sep; 82():409-415. PubMed ID: 31027800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage.
    Daelman J; Vermeulen A; Willemyns T; Ongenaert R; Jacxsens L; Uyttendaele M; Devlieghere F
    Int J Food Microbiol; 2013 Jan; 161(1):7-15. PubMed ID: 23246607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering.
    Zhang P; Kong L; Setlow P; Li YQ
    Appl Environ Microbiol; 2010 Mar; 76(6):1796-805. PubMed ID: 20097820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes.
    Ryang JH; Kim NH; Lee BS; Kim CT; Lee SH; Hwang IG; Rhee MS
    J Appl Microbiol; 2016 Jan; 120(1):175-84. PubMed ID: 26497155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of olive powder and high hydrostatic pressure on the inactivation of Bacillus cereus spores in a reference medium.
    Marco A; Ferrer C; Velasco LM; Rodrigo D; Muguerza B; Martínez A
    Foodborne Pathog Dis; 2011 Jun; 8(6):681-5. PubMed ID: 21381901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combined effect of pasteurization intensity, water activity, pH and incubation temperature on the survival and outgrowth of spores of Bacillus cereus and Bacillus pumilus in artificial media and food products.
    Samapundo S; Heyndrickx M; Xhaferi R; de Baenst I; Devlieghere F
    Int J Food Microbiol; 2014 Jul; 181():10-8. PubMed ID: 24801270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores.
    Zhao J; Krishna V; Hua B; Moudgil B; Koopman B
    J Photochem Photobiol B; 2009 Feb; 94(2):96-100. PubMed ID: 19041258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative approach for studying the effect of heat treatment conditions on resistance and recovery of Bacillus cereus spores.
    Laurent Y; Arino S; Rosso L
    Int J Food Microbiol; 1999 May; 48(2):149-57. PubMed ID: 10426451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.