BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 25755260)

  • 1. Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions.
    Ji X; Dadon DB; Abraham BJ; Lee TI; Jaenisch R; Bradner JE; Young RA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3841-6. PubMed ID: 25755260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of H4K20me3- and H3K4me3-associated RNAs using CARIP-Seq expands the transcriptional and epigenetic networks of embryonic stem cells.
    Kurup JT; Kidder BL
    J Biol Chem; 2018 Sep; 293(39):15120-15135. PubMed ID: 30115682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers.
    Vermeulen M; Eberl HC; Matarese F; Marks H; Denissov S; Butter F; Lee KK; Olsen JV; Hyman AA; Stunnenberg HG; Mann M
    Cell; 2010 Sep; 142(6):967-80. PubMed ID: 20850016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic and proteomic dissection and characterization of the human sperm chromatin.
    Castillo J; Amaral A; Azpiazu R; Vavouri T; Estanyol JM; Ballescà JL; Oliva R
    Mol Hum Reprod; 2014 Nov; 20(11):1041-53. PubMed ID: 25193639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting.
    Jayani RS; Ramanujam PL; Galande S
    Methods Cell Biol; 2010; 98():35-56. PubMed ID: 20816229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ChroP approach combines ChIP and mass spectrometry to dissect locus-specific proteomic landscapes of chromatin.
    Soldi M; Bonaldi T
    J Vis Exp; 2014 Apr; (86):. PubMed ID: 24747196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components.
    Soldi M; Bonaldi T
    Mol Cell Proteomics; 2013 Mar; 12(3):764-80. PubMed ID: 23319141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native Chromatin Proteomics (N-ChroP) to Characterize Histone Post-translational Modification (PTM) Combinatorics at Distinct Genomic Regions.
    Nicosia L; Bonaldi T
    Methods Mol Biol; 2021; 2351():251-274. PubMed ID: 34382194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry.
    Engelen E; Brandsma JH; Moen MJ; Signorile L; Dekkers DH; Demmers J; Kockx CE; Ozgür Z; van IJcken WF; van den Berg DL; Poot RA
    Nat Commun; 2015 May; 6():7155. PubMed ID: 25990348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells.
    Zhao XD; Han X; Chew JL; Liu J; Chiu KP; Choo A; Orlov YL; Sung WK; Shahab A; Kuznetsov VA; Bourque G; Oh S; Ruan Y; Ng HH; Wei CL
    Cell Stem Cell; 2007 Sep; 1(3):286-98. PubMed ID: 18371363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures.
    Ng JH; Kumar V; Muratani M; Kraus P; Yeo JC; Yaw LP; Xue K; Lufkin T; Prabhakar S; Ng HH
    Dev Cell; 2013 Feb; 24(3):324-33. PubMed ID: 23352811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone modifications for human epigenome analysis.
    Kimura H
    J Hum Genet; 2013 Jul; 58(7):439-45. PubMed ID: 23739122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin condensation of Xist genomic loci during oogenesis in mice.
    Fukuda A; Mitani A; Miyashita T; Umezawa A; Akutsu H
    Development; 2015 Dec; 142(23):4049-55. PubMed ID: 26459223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streamlined discovery of cross-linked chromatin complexes and associated histone modifications by mass spectrometry.
    Zee BM; Alekseyenko AA; McElroy KA; Kuroda MI
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1784-9. PubMed ID: 26831069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum.
    Trelle MB; Salcedo-Amaya AM; Cohen AM; Stunnenberg HG; Jensen ON
    J Proteome Res; 2009 Jul; 8(7):3439-50. PubMed ID: 19351122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro chromatin immunoprecipitation (μChIP) from early mammalian embryos.
    Dahl JA; Klungland A
    Methods Mol Biol; 2015; 1222():227-45. PubMed ID: 25287350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation.
    Binder H; Steiner L; Przybilla J; Rohlf T; Prohaska S; Galle J
    Phys Biol; 2013 Apr; 10(2):026006. PubMed ID: 23481318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.