These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25755278)

  • 21. The effect of systemic injection of cyclosporin A on the phosphorylation of the PKC substrates MARCKS and GAP43 in the rat hippocampus.
    Yi H; Kim SH; Park HG; Yu HS; Kim YS
    Neurosci Lett; 2011 Jun; 497(1):17-21. PubMed ID: 21514360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracellular signal-regulated kinase and glycogen synthase kinase 3β regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain-dependent mechanism.
    Tyagarajan SK; Ghosh H; Yévenes GE; Imanishi SY; Zeilhofer HU; Gerrits B; Fritschy JM
    J Biol Chem; 2013 Apr; 288(14):9634-9647. PubMed ID: 23408424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells.
    Viltono L; Patrizi A; Fritschy JM; Sassoè-Pognetto M
    J Comp Neurol; 2008 Jun; 508(4):579-91. PubMed ID: 18366064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collybistin is required for both the formation and maintenance of GABAergic postsynapses in the hippocampus.
    Papadopoulos T; Eulenburg V; Reddy-Alla S; Mansuy IM; Li Y; Betz H
    Mol Cell Neurosci; 2008 Oct; 39(2):161-9. PubMed ID: 18625319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gephyrin-independent GABA(A)R mobility and clustering during plasticity.
    Niwa F; Bannai H; Arizono M; Fukatsu K; Triller A; Mikoshiba K
    PLoS One; 2012; 7(4):e36148. PubMed ID: 22563445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PKC-mediated HuD-GAP43 pathway activation in a mouse model of antiretroviral painful neuropathy.
    Sanna MD; Quattrone A; Ghelardini C; Galeotti N
    Pharmacol Res; 2014 Mar; 81():44-53. PubMed ID: 24565699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gephyrin: a key regulatory protein of inhibitory synapses and beyond.
    Groeneweg FL; Trattnig C; Kuhse J; Nawrotzki RA; Kirsch J
    Histochem Cell Biol; 2018 Nov; 150(5):489-508. PubMed ID: 30264265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postsynaptic gephyrin immunoreactivity exhibits a nearly one-to-one correspondence with gamma-aminobutyric acid-like immunogold-labeled synaptic inputs to sympathetic preganglionic neurons.
    Cabot JB; Bushnell A; Alessi V; Mendell NR
    J Comp Neurol; 1995 Jun; 356(3):418-32. PubMed ID: 7642803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of gephyrin in hippocampal neurons by cyclin-dependent kinase CDK5 at Ser-270 is dependent on collybistin.
    Kuhse J; Kalbouneh H; Schlicksupp A; Mükusch S; Nawrotzki R; Kirsch J
    J Biol Chem; 2012 Sep; 287(37):30952-66. PubMed ID: 22778260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homeostatic regulation of gephyrin scaffolds and synaptic strength at mature hippocampal GABAergic postsynapses.
    Vlachos A; Reddy-Alla S; Papadopoulos T; Deller T; Betz H
    Cereb Cortex; 2013 Nov; 23(11):2700-11. PubMed ID: 22918984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurofascin regulates the formation of gephyrin clusters and their subsequent translocation to the axon hillock of hippocampal neurons.
    Burkarth N; Kriebel M; Kranz EU; Volkmer H
    Mol Cell Neurosci; 2007 Sep; 36(1):59-70. PubMed ID: 17681789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gephyrin expression and clustering affects the size of glutamatergic synaptic contacts.
    Yu W; De Blas AL
    J Neurochem; 2008 Feb; 104(3):830-45. PubMed ID: 18199120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of gephyrin-immunoreactivity in the trigeminal motor nucleus: an immunohistochemical study in rats.
    Li Z; Ge S; Zhang F; Zhang T; Mizuno N; Hioki H; Kaneko T; Gao G; Li J
    Anat Rec (Hoboken); 2012 Apr; 295(4):641-51. PubMed ID: 22290869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disruption of postsynaptic GABA receptor clusters leads to decreased GABAergic innervation of pyramidal neurons.
    Li RW; Yu W; Christie S; Miralles CP; Bai J; Loturco JJ; De Blas AL
    J Neurochem; 2005 Nov; 95(3):756-70. PubMed ID: 16248887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct binding of GABAA receptor β2 and β3 subunits to gephyrin.
    Kowalczyk S; Winkelmann A; Smolinsky B; Förstera B; Neundorf I; Schwarz G; Meier JC
    Eur J Neurosci; 2013 Feb; 37(4):544-54. PubMed ID: 23205938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with presynaptic and postsynaptic tagged-molecular markers.
    Kuriu T; Yanagawa Y; Konishi S
    Mol Cell Neurosci; 2012 Feb; 49(2):184-95. PubMed ID: 22146684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice.
    Studer R; von Boehmer L; Haenggi T; Schweizer C; Benke D; Rudolph U; Fritschy JM
    Eur J Neurosci; 2006 Sep; 24(5):1307-15. PubMed ID: 16987218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycine and GABA(A) receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters.
    Geiman EJ; Zheng W; Fritschy JM; Alvarez FJ
    J Comp Neurol; 2002 Mar; 444(3):275-89. PubMed ID: 11840480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in the composition of detergent-resistant membrane domains of cultured neurons following protein kinase C activation.
    Botto L; Masserini M; Palestini P
    J Neurosci Res; 2007 Feb; 85(2):443-50. PubMed ID: 17086551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maternal dietary loads of α-tocopherol depress protein kinase C signaling and synaptic plasticity in rat postnatal developing hippocampus and promote permanent deficits in adult offspring.
    Betti M; Ambrogini P; Minelli A; Floridi A; Lattanzi D; Ciuffoli S; Bucherelli C; Prospero E; Frontini A; Santarelli L; Baldi E; Benetti F; Galli F; Cuppini R
    J Nutr Biochem; 2011 Jan; 22(1):60-70. PubMed ID: 20382010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.