These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25755301)

  • 1. Micro-poromechanics model of fluid-saturated chemically active fibrous media.
    Misra A; Parthasarathy R; Singh V; Spencer P
    Z Angew Math Mech; 2015 Feb; 95(2):215-234. PubMed ID: 25755301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poromechanics Parameters of Fluid-Saturated Chemically Active Fibrous Media Derived from a Micromechanical Approach.
    Misra A; Parthasarathy R; Singh V; Spencer P
    J Nanomech Micromech; 2013; 3(4):. PubMed ID: 25419475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractional-order poromechanics for a fully saturated biological tissue: Biomechanics of meniscus.
    Amiri F; Bologna E; Nuzzo G; Moroni L; Zingales M
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3732. PubMed ID: 37203427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model.
    Urcun S; Rohan PY; Sciumè G; Bordas SPA
    J Mech Behav Biomed Mater; 2022 Feb; 126():104952. PubMed ID: 34906865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poromechanics of compressible charged porous media using the theory of mixtures.
    Huyghe JM; Molenaar MM; Baajens FP
    J Biomech Eng; 2007 Oct; 129(5):776-85. PubMed ID: 17887904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Analysis and Poromechanics Calculation for Saturated Mortar Involved with Sub-Freezing Temperature.
    Xie W; Su H; Shao C; Zheng S
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the micromechanics of stress-relaxation and creep behaviours in the aortic valve.
    Anssari-Benam A; Screen HRC; Bucchi A
    J Mech Behav Biomed Mater; 2019 May; 93():230-245. PubMed ID: 30844614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic and inelastic deformation of fluid-saturated rock.
    Makhnenko RY; Labuz JF
    Philos Trans A Math Phys Eng Sci; 2016 Oct; 374(2078):. PubMed ID: 27597783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
    Zhu Y; Kang G; Yu C; Poh LH
    J Mech Behav Biomed Mater; 2016 Aug; 61():397-409. PubMed ID: 27108349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical conversion of transient to harmonic response functions for linear viscoelastic materials.
    Buschmann MD
    J Biomech; 1997 Feb; 30(2):197-202. PubMed ID: 9001942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model.
    Bergström JS; Rimnac CM; Kurtz SM
    Biomaterials; 2003 Apr; 24(8):1365-80. PubMed ID: 12527278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibronectin fiber creep under constant force loading.
    Bradshaw MJ; Hoffmann GA; Wong JY; Smith ML
    Acta Biomater; 2019 Apr; 88():78-85. PubMed ID: 30780000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Strain Rates on the Stress-Strain Behavior of FRP-Confined Pre-Damaged Concrete.
    Cao Y; Liu M; Zhang Y; Hu J; Yang S
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32121127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.