BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25755675)

  • 1. Effects of electrode position on spatiotemporal auditory nerve fiber responses: a 3D computational model study.
    Kang S; Chwodhury T; Moon IJ; Hong SH; Yang H; Won JH; Woo J
    Comput Math Methods Med; 2015; 2015():934382. PubMed ID: 25755675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2016 Nov; 341():130-143. PubMed ID: 27594099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
    Woo J; Miller CA; Abbas PJ
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):283-96. PubMed ID: 20033248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional spiraling finite element model of the electrically stimulated cochlea.
    Hanekom T
    Ear Hear; 2001 Aug; 22(4):300-15. PubMed ID: 11527037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach.
    Briaire JJ; Frijns JH
    Hear Res; 2006 Apr; 214(1-2):17-27. PubMed ID: 16520009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study.
    van Gendt MJ; Briaire JJ; Frijns JHM
    Hear Res; 2019 Jun; 377():167-178. PubMed ID: 30947041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of electrode position on the dynamic range of a human auditory nerve fiber.
    Rattay F; Tanzer T
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35105835
    [No Abstract]   [Full Text] [Related]  

  • 10. Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modeling study.
    Frijns JH; Kalkman RK; Briaire JJ
    Otol Neurotol; 2009 Dec; 30(8):1168-74. PubMed ID: 19574948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study to model the effect of electrode-to-auditory nerve fiber distance on spectral resolution in cochlear implant.
    Yang H; Won JH; Choi I; Woo J
    PLoS One; 2020; 15(8):e0236784. PubMed ID: 32745116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1040-9. PubMed ID: 15977734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of neural stochastic firing in cochlear implant stimulation by the addition of noise: a computational study of the influence of stimulation settings and spontaneous activity.
    Paglialonga A; Fiocchi S; Ravazzani P; Tognola G
    Comput Biol Med; 2010 Jun; 40(6):597-606. PubMed ID: 20471638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.
    Miller CA; Hu N; Zhang F; Robinson BK; Abbas PJ
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):122-37. PubMed ID: 18204987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature.
    Kalkman RK; Briaire JJ; Frijns JH
    Network; 2016; 27(2-3):107-134. PubMed ID: 27135951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):825-35. PubMed ID: 12848350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-cochlear differences in the spread of excitation between biphasic and triphasic pulse stimulation in cochlear implants: A modeling and experimental study.
    Herrmann DP; Kalkman RK; Frijns JHM; Bahmer A
    Hear Res; 2023 May; 432():108752. PubMed ID: 37019060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1389-98. PubMed ID: 17694859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.