BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25755675)

  • 21. Effects of neural refractoriness on spatio-temporal variability in spike initiations with Electrical stimulation.
    Mino H; Rubinstein JT
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):273-80. PubMed ID: 17009486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Phenomenological Model Reproducing Temporal Response Characteristics of an Electrically Stimulated Auditory Nerve Fiber.
    Takanen M; Seeber BU
    Trends Hear; 2022; 26():23312165221117079. PubMed ID: 36071660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element analysis and three-dimensional reconstruction of tonotopically aligned human auditory fiber pathways: A computational environment for modeling electrical stimulation by a cochlear implant based on micro-CT.
    Potrusil T; Heshmat A; Sajedi S; Wenger C; Johnson Chacko L; Glueckert R; Schrott-Fischer A; Rattay F
    Hear Res; 2020 Aug; 393():108001. PubMed ID: 32535276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stochastic information transfer from cochlear implant electrodes to auditory nerve fibers.
    Gao X; Grayden DB; McDonnell MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022722. PubMed ID: 25215773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea.
    Frijns JH; de Snoo SL; ten Kate JH
    Hear Res; 1996 May; 95(1-2):33-48. PubMed ID: 8793506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains.
    Runge-Samuelson CL; Abbas PJ; Rubinstein JT; Miller CA; Robinson BK
    Hear Res; 2004 Aug; 194(1-2):1-13. PubMed ID: 15276671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the Cochlear Implant Electrode Array Placement on the Current Spread in the Cochlea.
    Schafer F; Enke J; Bohnke F; Hemmert W; Bai S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6145-6148. PubMed ID: 30441737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing.
    Boëx C; Baud L; Cosendai G; Sigrist A; Kós MI; Pelizzone M
    J Assoc Res Otolaryngol; 2006 Jun; 7(2):110-24. PubMed ID: 16450213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renewal-process approximation of a stochastic threshold model for electrical neural stimulation.
    Bruce IC; Irlicht LS; White MW; O'Leary SJ; Clark GM
    J Comput Neurosci; 2000; 9(2):119-32. PubMed ID: 11030517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Practical model description of peripheral neural excitation in cochlear implant recipients: 4. model development at low pulse rates: general model and application to individuals.
    Cohen LT
    Hear Res; 2009 Feb; 248(1-2):15-30. PubMed ID: 19110049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of a purely conductance-based stochastic nerve fibre model as applied to compound models of populations of human auditory nerve fibres used in cochlear implant simulations.
    Badenhorst W; Hanekom T; Hanekom JJ
    Biol Cybern; 2017 Dec; 111(5-6):439-458. PubMed ID: 29063191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitation patterns of simultaneous and sequential dual-electrode stimulation in cochlear implant recipients.
    Saoji AA; Litvak LM; Hughes ML
    Ear Hear; 2009 Oct; 30(5):559-67. PubMed ID: 19617837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses.
    Cartee LA; Miller CA; van den Honert C
    Hear Res; 2006 May; 215(1-2):10-21. PubMed ID: 16624511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling encapsulation tissue around cochlear implant electrodes.
    Hanekom T
    Med Biol Eng Comput; 2005 Jan; 43(1):47-55. PubMed ID: 15742719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea.
    Frijns JH; de Snoo SL; Schoonhoven R
    Hear Res; 1995 Jul; 87(1-2):170-86. PubMed ID: 8567435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards a Complete In Silico Assessment of the Outcome of Cochlear Implantation Surgery.
    Mangado N; Ceresa M; Benav H; Mistrik P; Piella G; González Ballester MA
    Mol Neurobiol; 2018 Jan; 55(1):173-186. PubMed ID: 28840488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array.
    Heshmat A; Sajedi S; Schrott-Fischer A; Rattay F
    Front Neurosci; 2021; 15():751599. PubMed ID: 34955717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A point process framework for modeling electrical stimulation of the auditory nerve.
    Goldwyn JH; Rubinstein JT; Shea-Brown E
    J Neurophysiol; 2012 Sep; 108(5):1430-52. PubMed ID: 22673331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.