BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25755927)

  • 1. Structure determination of Murine Norovirus NS6 proteases with C-terminal extensions designed to probe protease-substrate interactions.
    Fernandes H; Leen EN; Cromwell H; Pfeil MP; Curry S
    PeerJ; 2015; 3():e798. PubMed ID: 25755927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation.
    Leen EN; Baeza G; Curry S
    PLoS One; 2012; 7(6):e38723. PubMed ID: 22685603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of the cleavage specificity of the sapovirus chymotrypsin-like protease.
    Robel I; Gebhardt J; Mesters JR; Gorbalenya A; Coutard B; Canard B; Hilgenfeld R; Rohayem J
    J Virol; 2008 Aug; 82(16):8085-93. PubMed ID: 18550673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity.
    Herod MR; Prince CA; Skilton RJ; Ward VK; Cooper JB; Clarke IN
    Biochem J; 2014 Dec; 464(3):461-72. PubMed ID: 25275273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cell-based Fluorescence Resonance Energy Transfer (FRET) Sensor Reveals Inter- and Intragenogroup Variations in Norovirus Protease Activity and Polyprotein Cleavage.
    Emmott E; Sweeney TR; Goodfellow I
    J Biol Chem; 2015 Nov; 290(46):27841-53. PubMed ID: 26363064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Polyprotein Processing Determines Norovirus Sensitivity to Trim7.
    Sullender ME; Pierce LR; Annaswamy Srinivas M; Crockett SL; Dunlap BF; Rodgers R; Schriefer LA; Kennedy EA; Stewart BM; Doench JG; Baldridge MT; Orchard RC
    J Virol; 2022 Sep; 96(17):e0070722. PubMed ID: 35972292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic role of an NS4A peptide cofactor with the truncated NS3 protease of hepatitis C virus: elucidation of the NS4A stimulatory effect via kinetic analysis and inhibitor mapping.
    Landro JA; Raybuck SA; Luong YP; O'Malley ET; Harbeson SL; Morgenstern KA; Rao G; Livingston DJ
    Biochemistry; 1997 Aug; 36(31):9340-8. PubMed ID: 9235976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage specificity of the subtilisin-like protease C1 from soybean.
    Boyd PM; Barnaby N; Tan-Wilson A; Wilson KA
    Biochim Biophys Acta; 2002 Apr; 1596(2):269-82. PubMed ID: 12007608
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Mann KS; Chisholm J; Sanfaçon H
    J Virol; 2019 Mar; 93(5):. PubMed ID: 30541838
    [No Abstract]   [Full Text] [Related]  

  • 10. Insights into the enzyme-substrate interaction in the norovirus 3C-like protease.
    Someya Y; Takeda N
    J Biochem; 2009 Oct; 146(4):509-21. PubMed ID: 19556225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme kinetics of the human norovirus protease control virus polyprotein processing order.
    May J; Korba B; Medvedev A; Viswanathan P
    Virology; 2013 Sep; 444(1-2):218-24. PubMed ID: 23850457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance.
    Laco GS
    Biochimie; 2015 Nov; 118():90-103. PubMed ID: 26300060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the catalytic domain of the hepatitis C virus NS2-3 protease.
    Lorenz IC; Marcotrigiano J; Dentzer TG; Rice CM
    Nature; 2006 Aug; 442(7104):831-5. PubMed ID: 16862121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity.
    Wirblich C; Sibilia M; Boniotti MB; Rossi C; Thiel HJ; Meyers G
    J Virol; 1995 Nov; 69(11):7159-68. PubMed ID: 7474137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for specificity of retroviral proteases.
    Wu J; Adomat JM; Ridky TW; Louis JM; Leis J; Harrison RW; Weber IT
    Biochemistry; 1998 Mar; 37(13):4518-26. PubMed ID: 9521772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis.
    Liu B; Clarke IN; Lambden PR
    J Virol; 1996 Apr; 70(4):2605-10. PubMed ID: 8642693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human cytomegalovirus protease complexes its substrate recognition sequences in an extended peptide conformation.
    LaPlante SR; Aubry N; Bonneau PR; Cameron DR; Lagacé L; Massariol MJ; Montpetit H; Plouffe C; Kawai SH; Fulton BD; Chen Z; Ni F
    Biochemistry; 1998 Jul; 37(27):9793-801. PubMed ID: 9657693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of essential amino acid residues in the functional activity of poliovirus 2A protease.
    Yu SF; Lloyd RE
    Virology; 1991 Jun; 182(2):615-25. PubMed ID: 1850921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates.
    Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM
    Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and Characterization of the HCV NS2 Protease.
    Reed KE; Rice CM
    Methods Mol Med; 1999; 19():331-42. PubMed ID: 21374374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.