BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 25756177)

  • 21. Uncovering Bleomycin-Induced Genomic Alterations and Underlying Mechanisms in the Yeast
    Zheng DQ; Wang YT; Zhu YX; Sheng H; Li KJ; Sui Y; Zhang K
    Appl Environ Microbiol; 2022 Jan; 88(2):e0170321. PubMed ID: 34731050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.
    Blake D; Luke B; Kanellis P; Jorgensen P; Goh T; Penfold S; Breitkreutz BJ; Durocher D; Peter M; Tyers M
    Genetics; 2006 Dec; 174(4):1709-27. PubMed ID: 16751663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Navigating yeast genome maintenance with functional genomics.
    Measday V; Stirling PC
    Brief Funct Genomics; 2016 Mar; 15(2):119-29. PubMed ID: 26323482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks.
    Herzberg K; Bashkirov VI; Rolfsmeier M; Haghnazari E; McDonald WH; Anderson S; Bashkirova EV; Yates JR; Heyer WD
    Mol Cell Biol; 2006 Nov; 26(22):8396-409. PubMed ID: 16966380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints.
    Banerjee S; Myung K
    Eukaryot Cell; 2004 Dec; 3(6):1557-66. PubMed ID: 15590829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous deletions and reciprocal translocations in Saccharomyces cerevisiae: influence of ploidy.
    Tourrette Y; Schacherer J; Fritsch E; Potier S; Souciet JL; de Montigny J
    Mol Microbiol; 2007 Apr; 64(2):382-95. PubMed ID: 17493124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of different classes of genome instability suppressor genes through analysis of DNA damage response markers.
    Li BZ; Kolodner RD; Putnam CD
    G3 (Bethesda); 2024 Jun; 14(6):. PubMed ID: 38526099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aneuploidy drives genomic instability in yeast.
    Sheltzer JM; Blank HM; Pfau SJ; Tange Y; George BM; Humpton TJ; Brito IL; Hiraoka Y; Niwa O; Amon A
    Science; 2011 Aug; 333(6045):1026-30. PubMed ID: 21852501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of a 20S proteasome activator in Saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action.
    Doherty KM; Pride LD; Lukose J; Snydsman BE; Charles R; Pramanik A; Muller EG; Botstein D; Moore CW
    G3 (Bethesda); 2012 Aug; 2(8):943-59. PubMed ID: 22908043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.
    Kaniak A; Dzierzbicki P; Rogowska AT; Malc E; Fikus M; Ciesla Z
    DNA Repair (Amst); 2009 Mar; 8(3):318-29. PubMed ID: 19056520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51.
    Bronstein A; Gershon L; Grinberg G; Alonso-Perez E; Kupiec M
    mBio; 2018 Jul; 9(4):. PubMed ID: 30018112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage.
    Huang ME; Kolodner RD
    Mol Cell; 2005 Mar; 17(5):709-20. PubMed ID: 15749020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 in
    Thurston AK; Radebaugh CA; Almeida AR; Argueso JL; Stargell LA
    Genetics; 2018 Dec; 210(4):1227-1237. PubMed ID: 30301740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of Saccharomyces cerevisiae RAD17 and CHK1 checkpoint genes in the repair of double-strand breaks in cycling cells.
    Bracesco N; Candreva EC; Keszenman D; Sánchez AG; Soria S; Dell M; Siede W; Nunes E
    Radiat Environ Biophys; 2007 Nov; 46(4):401-7. PubMed ID: 17624540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair.
    Chen C; Umezu K; Kolodner RD
    Mol Cell; 1998 Jul; 2(1):9-22. PubMed ID: 9702187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae.
    Andersen MP; Nelson ZW; Hetrick ED; Gottschling DE
    Genetics; 2008 Jul; 179(3):1179-95. PubMed ID: 18562670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous duplications in diploid Saccharomyces cerevisiae cells.
    Schacherer J; Tourrette Y; Potier S; Souciet JL; de Montigny J
    DNA Repair (Amst); 2007 Oct; 6(10):1441-52. PubMed ID: 17544927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide genetic analysis of polyploidy in yeast.
    Storchová Z; Breneman A; Cande J; Dunn J; Burbank K; O'Toole E; Pellman D
    Nature; 2006 Oct; 443(7111):541-7. PubMed ID: 17024086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae.
    Degtyareva NP; Chen L; Mieczkowski P; Petes TD; Doetsch PW
    Mol Cell Biol; 2008 Sep; 28(17):5432-45. PubMed ID: 18591251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.