BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25756177)

  • 41. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance.
    Saka K; Takahashi A; Sasaki M; Kobayashi T
    Nucleic Acids Res; 2016 May; 44(9):4211-21. PubMed ID: 26912831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptation in replicative senescence: a risky business.
    Coutelier H; Xu Z
    Curr Genet; 2019 Jun; 65(3):711-716. PubMed ID: 30637477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glu-108 in Saccharomyces cerevisiae Rad51 Is Critical for DNA Damage-Induced Nuclear Function.
    Suhane T; Bindumadhavan V; Fangaria N; Nair AS; Tabassum W; Muley P; Bhattacharyya MK; Bhattacharyya S
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894431
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Checkpoint adaptation in recombination-deficient cells drives aneuploidy and resistance to genotoxic agents.
    Vydzhak O; Bender K; Klermund J; Busch A; Reimann S; Luke B
    DNA Repair (Amst); 2020 Nov; 95():102939. PubMed ID: 32777450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae.
    Mieczkowski PA; Dominska M; Buck MJ; Gerton JL; Lieb JD; Petes TD
    Mol Cell Biol; 2006 Feb; 26(3):1014-27. PubMed ID: 16428454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
    Doudican NA; Song B; Shadel GS; Doetsch PW
    Mol Cell Biol; 2005 Jun; 25(12):5196-204. PubMed ID: 15923634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA homology and chromosome stability: a sensitive yeast genetic system for identifying double-stranded DNA damage.
    Resnick MA; Nilsson-Tillgren T
    Prog Clin Biol Res; 1990; 340B():363-9. PubMed ID: 2203015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rad52 forms DNA repair and recombination centers during S phase.
    Lisby M; Rothstein R; Mortensen UH
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8276-82. PubMed ID: 11459964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sml1 Inhibits the DNA Repair Activity of Rev1 in Saccharomyces cerevisiae during Oxidative Stress.
    Yao R; Zhou P; Wu C; Liu L; Wu J
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correction: a genomic screen revealing the importance of vesicular trafficking pathways in genome maintenance and protection against genotoxic stress in diploid Saccharomyces cerevisiae cells.
    PLOS ONE Staff
    PLoS One; 2015; 10(4):e0124186. PubMed ID: 25849122
    [No Abstract]   [Full Text] [Related]  

  • 51. Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae.
    Yoblinski AR; Chung S; Robinson SB; Forester KE; Strahl BD; Dronamraju R
    J Biol Chem; 2021; 296():100721. PubMed ID: 33933452
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A DNA integrity network in the yeast Saccharomyces cerevisiae.
    Pan X; Ye P; Yuan DS; Wang X; Bader JS; Boeke JD
    Cell; 2006 Mar; 124(5):1069-81. PubMed ID: 16487579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae.
    Singh RK; Krishna M
    Radiat Res; 2005 Dec; 164(6):781-90. PubMed ID: 16296884
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homologous recombination is required for recovery from oxidative DNA damage.
    Hayashi M; Umezu K
    Genes Genet Syst; 2017 Oct; 92(2):73-80. PubMed ID: 28381656
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases.
    Vance JR; Wilson TE
    Mol Cell Biol; 2001 Nov; 21(21):7191-8. PubMed ID: 11585902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Essential
    Srivatsan A; Li B; Sanchez DN; Somach SB; da Silva VL; de Souza SJ; Putnam CD; Kolodner RD
    Proc Natl Acad Sci U S A; 2019 Aug; 116(35):17377-17382. PubMed ID: 31409704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination.
    Erdemir T; Bilican B; Cagatay T; Goding CR; Yavuzer U
    Mol Microbiol; 2002 Nov; 46(4):947-57. PubMed ID: 12421302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions.
    Kanellis P; Gagliardi M; Banath JP; Szilard RK; Nakada S; Galicia S; Sweeney FD; Cabelof DC; Olive PL; Durocher D
    PLoS Genet; 2007 Aug; 3(8):e134. PubMed ID: 17696614
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Topoisomerase I and Genome Stability: The Good and the Bad.
    Cho JE; Jinks-Robertson S
    Methods Mol Biol; 2018; 1703():21-45. PubMed ID: 29177731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae.
    Tsukamoto Y; Kato J; Ikeda H
    Nature; 1997 Aug; 388(6645):900-3. PubMed ID: 9278054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.