These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25756227)

  • 21. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.
    Nasser F; Lynch I
    J Proteomics; 2016 Mar; 137():45-51. PubMed ID: 26376098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alleviative Effects of C
    Chen Z; Zhu X; Lv X; Huang Y; Qian W; Wang P; Li B; Wang Z; Cai Z
    Environ Sci Technol; 2019 Jul; 53(14):8381-8388. PubMed ID: 31276389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio).
    Skjolding LM; Winther-Nielsen M; Baun A
    Aquat Toxicol; 2014 Dec; 157():101-8. PubMed ID: 25456224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Converging hazard assessment of gold nanoparticles to aquatic organisms.
    García-Cambero JP; Núñez García M; López GD; Herranz AL; Cuevas L; Pérez-Pastrana E; Cuadal JS; Castelltort MR; Calvo AC
    Chemosphere; 2013 Oct; 93(6):1194-200. PubMed ID: 23916211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna.
    Lee BT; Ranville JF
    J Hazard Mater; 2012 Apr; 213-214():434-9. PubMed ID: 22402343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trophic transfer of Cu nanoparticles in a simulated aquatic food chain.
    Yu Q; Zhang Z; Monikh FA; Wu J; Wang Z; Vijver MG; Bosker T; Peijnenburg WJGM
    Ecotoxicol Environ Saf; 2022 Sep; 242():113920. PubMed ID: 35905628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of rapamycin on biodiesel-producing protist Euglena gracilis.
    Mukaida S; Ogawa T; Ohishi K; Tanizawa Y; Ohta D; Arita M
    Biosci Biotechnol Biochem; 2016 Jun; 80(6):1223-9. PubMed ID: 26872547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.
    Dalai S; Iswarya V; Bhuvaneshwari M; Pakrashi S; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2014 Jul; 152():139-46. PubMed ID: 24755515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain.
    Unrine JM; Shoults-Wilson WA; Zhurbich O; Bertsch PM; Tsyusko OV
    Environ Sci Technol; 2012 Sep; 46(17):9753-60. PubMed ID: 22897478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake and Transfer of
    Wang C; Chang XL; Shi Q; Zhang X
    Environ Sci Technol; 2018 Nov; 52(21):12133-12141. PubMed ID: 30335979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models.
    Perreault F; Melegari SP; Fuzinatto CF; Bogdan N; Morin M; Popovic R; Matias WG
    Environ Toxicol; 2014 Mar; 29(3):328-36. PubMed ID: 22331655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray and electron microscopy studies on the biodistribution and biomodification of iron oxide nanoparticles in Daphnia magna.
    Kwon D; Nho HW; Yoon TH
    Colloids Surf B Biointerfaces; 2014 Oct; 122():384-389. PubMed ID: 25086306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acutely induced cell mortality in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae) following exposure to acrylic resin nanoparticles.
    Widyaningrum D; Iida D; Tanabe Y; Hayashi Y; Kurniasih SD; Ohama T
    J Phycol; 2019 Feb; 55(1):118-133. PubMed ID: 30304548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumulation and elimination of aqueous and dietary silver in Daphnia magna.
    Lam IK; Wang WX
    Chemosphere; 2006 Jun; 64(1):26-35. PubMed ID: 16442147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disaggregation of gold nanoparticles by
    Mattsson K; Aguilar R; Torstensson O; Perry D; Bernfur K; Linse S; Hansson LA; Åkerfeldt KS; Cedervall T
    Nanotoxicology; 2018 Oct; 12(8):885-900. PubMed ID: 30053796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis.
    Ozasa K; Won J; Song S; Tamaki S; Ishikawa T; Maeda M
    PLoS One; 2017; 12(2):e0172813. PubMed ID: 28234984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the potential for trophic transfer of roxithromycin along an experimental food chain.
    Ding J; Lu G; Liu J; Zhang Z
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10592-600. PubMed ID: 25739841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii.
    Jabusch TW; Swackhamer DL
    Environ Toxicol Chem; 2004 Dec; 23(12):2823-30. PubMed ID: 15648755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain.
    Bhuvaneshwari M; Kumar D; Roy R; Chakraborty S; Parashar A; Mukherjee A; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2017 Feb; 183():63-75. PubMed ID: 28024216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle Surface Affinity as a Predictor of Trophic Transfer.
    Geitner NK; Marinakos SM; Guo C; O'Brien N; Wiesner MR
    Environ Sci Technol; 2016 Jul; 50(13):6663-9. PubMed ID: 27249534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.