These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
596 related articles for article (PubMed ID: 25756251)
1. A short review of applications of liquid chromatography mass spectrometry based metabolomics techniques to the analysis of human urine. Zhang T; Watson DG Analyst; 2015 May; 140(9):2907-15. PubMed ID: 25756251 [TBL] [Abstract][Full Text] [Related]
2. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Khamis MM; Adamko DJ; El-Aneed A Mass Spectrom Rev; 2017 Mar; 36(2):115-134. PubMed ID: 25881008 [TBL] [Abstract][Full Text] [Related]
3. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Peng J; Chen YT; Chen CL; Li L Anal Chem; 2014 Jul; 86(13):6540-7. PubMed ID: 24877652 [TBL] [Abstract][Full Text] [Related]
4. Recent and potential developments in the analysis of urine: a review. Ryan D; Robards K; Prenzler PD; Kendall M Anal Chim Acta; 2011 Jan; 684(1-2):8-20. PubMed ID: 21167980 [TBL] [Abstract][Full Text] [Related]
5. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease. Peng J; Guo K; Xia J; Zhou J; Yang J; Westaway D; Wishart DS; Li L J Proteome Res; 2014 Oct; 13(10):4457-69. PubMed ID: 25164377 [TBL] [Abstract][Full Text] [Related]
6. The great importance of normalization of LC-MS data for highly-accurate non-targeted metabolomics. Mizuno H; Ueda K; Kobayashi Y; Tsuyama N; Todoroki K; Min JZ; Toyo'oka T Biomed Chromatogr; 2017 Jan; 31(1):. PubMed ID: 27718276 [TBL] [Abstract][Full Text] [Related]
7. Mass spectrometry: from proteomics to metabolomics and lipidomics. Griffiths WJ; Wang Y Chem Soc Rev; 2009 Jul; 38(7):1882-96. PubMed ID: 19551169 [TBL] [Abstract][Full Text] [Related]
8. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes. Su X; Wang N; Chen D; Li Y; Lu Y; Huan T; Xu W; Li L; Li L Anal Chim Acta; 2016 Jan; 903():100-9. PubMed ID: 26709303 [TBL] [Abstract][Full Text] [Related]
9. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. Gika HG; Theodoridis GA; Plumb RS; Wilson ID J Pharm Biomed Anal; 2014 Jan; 87():12-25. PubMed ID: 23916607 [TBL] [Abstract][Full Text] [Related]
10. Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. Chetwynd AJ; Abdul-Sada A; Holt SG; Hill EM J Chromatogr A; 2016 Jan; 1431():103-110. PubMed ID: 26755417 [TBL] [Abstract][Full Text] [Related]
11. Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications. Yin P; Xu G J Chromatogr A; 2014 Dec; 1374():1-13. PubMed ID: 25444251 [TBL] [Abstract][Full Text] [Related]
12. Do not just do it, do it right: urinary metabolomics--establishing clinically relevant baselines. Trivedi DK; Iles RK Biomed Chromatogr; 2014 Nov; 28(11):1491-501. PubMed ID: 24788800 [TBL] [Abstract][Full Text] [Related]
13. Metabolomic applications of HILIC-LC-MS. Cubbon S; Antonio C; Wilson J; Thomas-Oates J Mass Spectrom Rev; 2010; 29(5):671-84. PubMed ID: 19557839 [TBL] [Abstract][Full Text] [Related]
14. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography-mass spectrometry. Khodadadi M; Pourfarzam M Metabolomics; 2020 May; 16(6):66. PubMed ID: 32419109 [TBL] [Abstract][Full Text] [Related]
15. Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Chetwynd AJ; Abdul-Sada A; Hill EM Anal Chem; 2015 Jan; 87(2):1158-65. PubMed ID: 25521704 [TBL] [Abstract][Full Text] [Related]
16. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome. Xu W; Chen D; Wang N; Zhang T; Zhou R; Huan T; Lu Y; Su X; Xie Q; Li L; Li L Anal Chem; 2015 Jan; 87(2):829-36. PubMed ID: 25486321 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the technical variations and the suitability of a hydrophilic interaction liquid chromatography-high resolution mass spectrometry (ZIC-pHILIC-Exactive orbitrap) for clinical urinary metabolomics study. Zhang T; Watson DG J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Jun; 1022():199-205. PubMed ID: 27107246 [TBL] [Abstract][Full Text] [Related]
18. Urinary exposure marker discovery for toxicants using ultra-high pressure liquid chromatography coupled with Orbitrap high resolution mass spectrometry and three untargeted metabolomics approaches. Hsu JY; Hsu JF; Chen YR; Shih CL; Hsu YS; Chen YJ; Tsai SH; Liao PC Anal Chim Acta; 2016 Oct; 939():73-83. PubMed ID: 27639145 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics. Wernisch S; Pennathur S Anal Bioanal Chem; 2016 Sep; 408(22):6079-91. PubMed ID: 27370688 [TBL] [Abstract][Full Text] [Related]
20. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling. Forcisi S; Moritz F; Kanawati B; Tziotis D; Lehmann R; Schmitt-Kopplin P J Chromatogr A; 2013 May; 1292():51-65. PubMed ID: 23631876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]