BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

747 related articles for article (PubMed ID: 25756411)

  • 1. Enhanced perfusion during advanced life support improves survival with favorable neurologic function in a porcine model of refractory cardiac arrest.
    Debaty G; Metzger A; Rees J; McKnite S; Puertas L; Yannopoulos D; Lurie K
    Crit Care Med; 2015 May; 43(5):1087-95. PubMed ID: 25756411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure.
    Metzger AK; Herman M; McKnite S; Tang W; Yannopoulos D
    Crit Care Med; 2012 Jun; 40(6):1851-6. PubMed ID: 22487997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest.
    Debaty G; Lurie K; Metzger A; Lick M; Bartos JA; Rees JN; McKnite S; Puertas L; Pepe P; Fowler R; Yannopoulos D
    Resuscitation; 2016 Aug; 105():29-35. PubMed ID: 27211835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitates intra-arrest therapeutic hypothermia in a porcine model of prolonged ventricular fibrillation.
    Debaty G; Matsuura TR; Bartos JA; Rees JN; McKnite SH; Lick M; Boucher F; Yannopoulos D
    Crit Care Med; 2015 Apr; 43(4):849-55. PubMed ID: 25525755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the impedance threshold device improves survival rate and neurological outcome in a swine model of asphyxial cardiac arrest*.
    Pantazopoulos IN; Xanthos TT; Vlachos I; Troupis G; Kotsiomitis E; Johnson E; Papalois A; Skandalakis P
    Crit Care Med; 2012 Mar; 40(3):861-8. PubMed ID: 21983368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium nitroprusside-enhanced cardiopulmonary resuscitation improves resuscitation rates after prolonged untreated cardiac arrest in two porcine models.
    Schultz JC; Segal N; Caldwell E; Kolbeck J; McKnite S; Lebedoff N; Zviman M; Aufderheide TP; Yannopoulos D
    Crit Care Med; 2011 Dec; 39(12):2705-10. PubMed ID: 21725236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold aortic flush and chest compressions enable good neurologic outcome after 15 mins of ventricular fibrillation in cardiac arrest in pigs.
    Janata A; Weihs W; Schratter A; Bayegan K; Holzer M; Frossard M; Sipos W; Springler G; Schmidt P; Sterz F; Losert UM; Laggner AN; Kochanek PM; Behringer W
    Crit Care Med; 2010 Aug; 38(8):1637-43. PubMed ID: 20543671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bundled postconditioning therapies improve hemodynamics and neurologic recovery after 17 min of untreated cardiac arrest.
    Bartos JA; Matsuura TR; Sarraf M; Youngquist ST; McKnite SH; Rees JN; Sloper DT; Bates FS; Segal N; Debaty G; Lurie KG; Neumar RW; Metzger JM; Riess ML; Yannopoulos D
    Resuscitation; 2015 Feb; 87():7-13. PubMed ID: 25447036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG
    Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest.
    Wolcke BB; Mauer DK; Schoefmann MF; Teichmann H; Provo TA; Lindner KH; Dick WF; Aeppli D; Lurie KG
    Circulation; 2003 Nov; 108(18):2201-5. PubMed ID: 14568898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest.
    Ikeno F; Kaneda H; Hongo Y; Sakanoue Y; Nolasco C; Emami S; Lyons J; Rezaee M
    Resuscitation; 2006 Jan; 68(1):109-18. PubMed ID: 16325982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest.
    Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W
    Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs.
    Lindner KH; Pfenninger EG; Lurie KG; Schürmann W; Lindner IM; Ahnefeld FW
    Circulation; 1993 Sep; 88(3):1254-63. PubMed ID: 8353887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid induction of cerebral hypothermia is enhanced with active compression-decompression plus inspiratory impedance threshold device cardiopulmonary resusitation in a porcine model of cardiac arrest.
    Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG
    J Am Coll Cardiol; 2006 Feb; 47(4):835-41. PubMed ID: 16487853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitric oxide synthase modulation on resuscitation success in a swine ventricular fibrillation cardiac arrest model.
    Zhang Y; Boddicker KA; Rhee BJ; Davies LR; Kerber RE
    Resuscitation; 2005 Oct; 67(1):127-34. PubMed ID: 16039037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From laboratory science to six emergency medical services systems: New understanding of the physiology of cardiopulmonary resuscitation increases survival rates after cardiac arrest.
    Aufderheide TP; Alexander C; Lick C; Myers B; Romig L; Vartanian L; Stothert J; McKnite S; Matsuura T; Yannopoulos D; Lurie K
    Crit Care Med; 2008 Nov; 36(11 Suppl):S397-404. PubMed ID: 20449900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Head Up Cardiopulmonary Resuscitation on Cerebral and Systemic Hemodynamics.
    Ryu HH; Moore JC; Yannopoulos D; Lick M; McKnite S; Shin SD; Kim TY; Metzger A; Rees J; Tsangaris A; Debaty G; Lurie KG
    Resuscitation; 2016 May; 102():29-34. PubMed ID: 26905388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve.
    Raedler C; Voelckel WG; Wenzel V; Bahlmann L; Baumeier W; Schmittinger CA; Herff H; Krismer AC; Lindner KH; Lurie KG
    Anesth Analg; 2002 Dec; 95(6):1496-502, table of contents. PubMed ID: 12456407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.