BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25756554)

  • 21. Photodynamic eradication of amelanotic melanoma of the hamster with fast acting photosensitizers.
    Dellian M; Richert C; Gamarra F; Goetz AE
    Int J Cancer; 1996 Jan; 65(2):246-8. PubMed ID: 8567124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide-mediated activity in anti-cancer photodynamic therapy.
    Rapozzi V; Della Pietra E; Zorzet S; Zacchigna M; Bonavida B; Xodo LE
    Nitric Oxide; 2013 Apr; 30():26-35. PubMed ID: 23357401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of mitochondria in cell death induced by Photofrin-PDT and ursodeoxycholic acid by means of SLIM.
    Kinzler I; Haseroth E; Hauser C; Rück A
    Photochem Photobiol Sci; 2007 Dec; 6(12):1332-40. PubMed ID: 18046490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Camptothecin-induced death of amelanotic and melanotic melanoma cells in different phases of cell cycle.
    Cichorek M
    Neoplasma; 2011; 58(3):227-34. PubMed ID: 21391739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primary treatment of choroidal amelanotic melanoma with photodynamic therapy--comment.
    Soucek P; Cihelkova I
    Clin Exp Ophthalmol; 2006; 34(7):721; author reply 721-2. PubMed ID: 16970777
    [No Abstract]   [Full Text] [Related]  

  • 26. The effect of photofrin on DNA strand breaks and base oxidation in HaCaT keratinocytes: a comet assay study.
    Woods JA; Traynor NJ; Brancaleon L; Moseley H
    Photochem Photobiol; 2004 Jan; 79(1):105-13. PubMed ID: 14974722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of primary antioxidant enzymes in mouse keratinocytes by photodynamically generated singlet oxygen.
    Luo J; Li L; Zhang Y; Spitz DR; Buettner GR; Oberley LW; Domann FE
    Antioxid Redox Signal; 2006; 8(7-8):1307-14. PubMed ID: 16910778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoinactivation of amelanotic and melanotic melanoma cells sensitized by axially substituted Si-naphthalocyanines.
    Soncin M; Busetti A; Biolo R; Jori G; Kwag G; Li YS; Kenney ME; Rodgers MA
    J Photochem Photobiol B; 1998 Mar; 42(3):202-10. PubMed ID: 9595709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chemical dosimeter for the determination of the photodynamic activity of photosensitizers.
    Fischer F; Graschew G; Sinn HJ; Maier-Borst W; Lorenz WJ; Schlag PM
    Clin Chim Acta; 1998 Jun; 274(1):89-104. PubMed ID: 9681600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electric field-assisted delivery of photofrin to human breast carcinoma cells.
    Wezgowiec J; Derylo MB; Teissie J; Orio J; Rols MP; Kulbacka J; Saczko J; Kotulska M
    J Membr Biol; 2013 Oct; 246(10):725-35. PubMed ID: 23546012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative decreases in tyrosinase, TRP-1, TRP-2, and Pmel 17/silver antigenic proteins from melanotic to amelanotic stages of syngeneic mouse cutaneous melanomas and metastases.
    Orlow SJ; Silvers WK; Zhou BK; Mintz B
    Cancer Res; 1998 Apr; 58(7):1521-3. PubMed ID: 9537258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells.
    Ahn JC; Biswas R; Chung PS
    Lasers Surg Med; 2012 Dec; 44(10):840-9. PubMed ID: 23143780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy.
    Maduray K; Karsten A; Odhav B; Nyokong T
    J Photochem Photobiol B; 2011 May; 103(2):98-104. PubMed ID: 21367615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Susceptibility of Candida species to photodynamic effects of photofrin.
    Bliss JM; Bigelow CE; Foster TH; Haidaris CG
    Antimicrob Agents Chemother; 2004 Jun; 48(6):2000-6. PubMed ID: 15155191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyanines in photodynamic reaction assisted by reversible electroporation--in vitro study on human breast carcinoma cells.
    Wezgowiec J; Kotulska M; Saczko J; Derylo MB; Teissie J; Rols MP; Orio J; Garbiec A; Kulbacka J
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):490-502. PubMed ID: 24284102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of curcumin-based photodynamic therapy and its effects in combination with electroporation: An in vitro and molecular dynamics study.
    Szlasa W; Szewczyk A; Drąg-Zalesińska M; Czapor-Irzabek H; Michel O; Kiełbik A; Cierluk K; Zalesińska A; Novickij V; Tarek M; Saczko J; Kulbacka J
    Bioelectrochemistry; 2021 Aug; 140():107806. PubMed ID: 33819839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanosecond pulsed electric fields (nsPEFs) impact and enhanced Photofrin II(®) delivery in photodynamic reaction in cancer and normal cells.
    Kulbacka J
    Photodiagnosis Photodyn Ther; 2015 Dec; 12(4):621-9. PubMed ID: 26563460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracranial metastatic melanoma: correlation between MR imaging characteristics and melanin content.
    Isiklar I; Leeds NE; Fuller GN; Kumar AJ
    AJR Am J Roentgenol; 1995 Dec; 165(6):1503-12. PubMed ID: 7484597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of transplantable melanoma cells to cytokines with regard to their spontaneous apoptosis.
    Kozłowska K; Zarzeczna M; Cichorek M
    Pathobiology; 2001; 69(5):249-57. PubMed ID: 12107342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased efficacy of in vitro Photofrin photosensitization of human oral squamous cell carcinoma by iron and ascorbate.
    Kelley EE; Domann FE; Buettner GR; Oberley LW; Burns CP
    J Photochem Photobiol B; 1997 Oct; 40(3):273-7. PubMed ID: 9372616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.