These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25756596)

  • 1. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.
    Tolonen LK; Bergenstråhle-Wohlert M; Sixta H; Wohlert J
    J Phys Chem B; 2015 Apr; 119(13):4739-48. PubMed ID: 25756596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride.
    Gross AS; Bell AT; Chu JW
    J Phys Chem B; 2011 Nov; 115(46):13433-40. PubMed ID: 21950594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride.
    Gross AS; Bell AT; Chu JW
    Phys Chem Chem Phys; 2012 Jun; 14(23):8425-30. PubMed ID: 22510706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems.
    Parthasarathi R; Balamurugan K; Shi J; Subramanian V; Simmons BA; Singh S
    J Phys Chem B; 2015 Nov; 119(45):14339-49. PubMed ID: 26407132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Water Content in N-Methylmorpholine N-Oxide/Cellulose Solutions on Thermodynamics, Structure, and Hydrogen Bonding.
    Rabideau BD; Ismail AE
    J Phys Chem B; 2015 Dec; 119(48):15014-22. PubMed ID: 26545042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems.
    Zhao Y; Liu X; Wang J; Zhang S
    J Phys Chem B; 2013 Aug; 117(30):9042-9. PubMed ID: 23829272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation studies of the insolubility of cellulose.
    Bergenstråhle M; Wohlert J; Himmel ME; Brady JW
    Carbohydr Res; 2010 Sep; 345(14):2060-6. PubMed ID: 20705283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cosolvent or antisolvent? A molecular view of the interface between ionic liquids and cellulose upon addition of another molecular solvent.
    Huo F; Liu Z; Wang W
    J Phys Chem B; 2013 Oct; 117(39):11780-92. PubMed ID: 24010550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution of cellulose in ionic liquid and water mixtures as revealed by molecular dynamics simulations.
    Manna B; Ghosh A
    J Biomol Struct Dyn; 2019 Sep; 37(15):3987-4005. PubMed ID: 30319053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation.
    Zhang Q; Brumer H; Ågren H; Tu Y
    Carbohydr Res; 2011 Nov; 346(16):2595-602. PubMed ID: 21974911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water structuring over the hydrophobic surface of cellulose.
    Miyamoto H; Schnupf U; Brady JW
    J Agric Food Chem; 2014 Nov; 62(46):11017-23. PubMed ID: 25365241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.
    Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A
    Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study.
    Liu H; Sale KL; Holmes BM; Simmons BA; Singh S
    J Phys Chem B; 2010 Apr; 114(12):4293-301. PubMed ID: 20218725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study.
    Ma H; Ma J
    J Chem Phys; 2011 Aug; 135(5):054504. PubMed ID: 21823709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid.
    Le KA; Rudaz C; Budtova T
    Carbohydr Polym; 2014 May; 105():237-43. PubMed ID: 24708976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the degree of substitution on the solubility of cellulose acetoacetates in water: A molecular dynamics simulation and density functional theory study.
    Wu W; Yang Y; Wang B; Rong L; Xu H; Sui X; Zhong Y; Zhang L; Chen Z; Feng X; Mao Z
    Carbohydr Res; 2020 Oct; 496():108134. PubMed ID: 32858483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density dependence of the entropy and the solvation shell structure in supercritical water via molecular dynamics simulation.
    Ma H
    J Chem Phys; 2012 Jun; 136(21):214501. PubMed ID: 22697552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models.
    McGrath MJ; Kuo IF; Ngouana W BF; Ghogomu JN; Mundy CJ; Marenich AV; Cramer CJ; Truhlar DG; Siepmann JI
    Phys Chem Chem Phys; 2013 Aug; 15(32):13578-85. PubMed ID: 23831584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of the dissolution process of a cellulose triacetate-II nano-sized crystal in DMSO.
    Hayakawa D; Ueda K; Yamane C; Miyamoto H; Horii F
    Carbohydr Res; 2011 Dec; 346(18):2940-7. PubMed ID: 22063502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential interactions between lithium chloride and glucan chains in N,N-dimethylacetamide drive cellulose dissolution.
    Gross AS; Bell AT; Chu JW
    J Phys Chem B; 2013 Mar; 117(12):3280-6. PubMed ID: 23442105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.