BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25756609)

  • 1. Tetrapyrrole-based drought stress signalling.
    Nagahatenna DS; Langridge P; Whitford R
    Plant Biotechnol J; 2015 May; 13(4):447-59. PubMed ID: 25756609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses.
    Zhang ZW; Zhang GC; Zhu F; Zhang DW; Yuan S
    Planta; 2015 Dec; 242(6):1263-76. PubMed ID: 26297452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice.
    Phung TH; Jung HI; Park JH; Kim JG; Back K; Jung S
    Plant Physiol; 2011 Dec; 157(4):1746-64. PubMed ID: 22021420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls.
    Masuda T
    Photosynth Res; 2008 May; 96(2):121-43. PubMed ID: 18273690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress.
    Xiong JL; Wang HC; Tan XY; Zhang CL; Naeem MS
    Plant Physiol Biochem; 2018 Mar; 124():88-99. PubMed ID: 29353686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.
    Busch AW; Montgomery BL
    Redox Biol; 2015; 4():260-71. PubMed ID: 25618582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis.
    Wang P; Ji S; Grimm B
    J Exp Bot; 2022 Aug; 73(14):4624-4636. PubMed ID: 35536687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel insights into the mechanism(s) of silicon-induced drought stress tolerance in lentil plants revealed by RNA sequencing analysis.
    Biju S; Fuentes S; Gupta D
    BMC Plant Biol; 2023 Oct; 23(1):498. PubMed ID: 37848813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants.
    Samanta S; Seth CS; Roychoudhury A
    Plant Physiol Biochem; 2024 Jan; 206():108259. PubMed ID: 38154293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment.
    Filippou P; Antoniou C; Obata T; Van Der Kelen K; Harokopos V; Kanetis L; Aidinis V; Van Breusegem F; Fernie AR; Fotopoulos V
    J Exp Bot; 2016 Mar; 67(5):1259-74. PubMed ID: 26712823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis.
    Karan R; Subudhi PK
    BMC Plant Biol; 2012 Oct; 12():187. PubMed ID: 23051937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.
    Huda KM; Banu MS; Garg B; Tula S; Tuteja R; Tuteja N
    Plant J; 2013 Dec; 76(6):997-1015. PubMed ID: 24128296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
    Miller G; Suzuki N; Ciftci-Yilmaz S; Mittler R
    Plant Cell Environ; 2010 Apr; 33(4):453-67. PubMed ID: 19712065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SbNAC9 Improves Drought Tolerance by Enhancing Scavenging Ability of Reactive Oxygen Species and Activating Stress-Responsive Genes of Sorghum.
    Jin X; Zheng Y; Wang J; Chen W; Yang Z; Chen Y; Yang Y; Lu G; Sun B
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquaporins as potential drought tolerance inducing proteins: Towards instigating stress tolerance.
    Zargar SM; Nagar P; Deshmukh R; Nazir M; Wani AA; Masoodi KZ; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():233-238. PubMed ID: 28412527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cell biology of tetrapyrroles: a life and death struggle.
    Mochizuki N; Tanaka R; Grimm B; Masuda T; Moulin M; Smith AG; Tanaka A; Terry MJ
    Trends Plant Sci; 2010 Sep; 15(9):488-98. PubMed ID: 20598625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation.
    Zia R; Nawaz MS; Siddique MJ; Hakim S; Imran A
    Microbiol Res; 2021 Jan; 242():126626. PubMed ID: 33189069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.