These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 25756610)

  • 1. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization.
    Papp SJ; Huber AL; Jordan SD; Kriebs A; Nguyen M; Moresco JJ; Yates JR; Lamia KA
    Elife; 2015 Mar; 4():. PubMed ID: 25756610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.
    Hirano A; Nakagawa T; Yoshitane H; Oyama M; Kozuka-Hata H; Lanjakornsiripan D; Fukada Y
    PLoS One; 2016; 11(4):e0154263. PubMed ID: 27123980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
    Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM
    J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1.
    Kang TH; Leem SH
    Nucleic Acids Res; 2014 Apr; 42(7):4427-34. PubMed ID: 24489120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical cholangiocarcinogenesis control by cryptochrome clock genes.
    Mteyrek A; Filipski E; Guettier C; Oklejewicz M; van der Horst GT; Okyar A; Lévi F
    Int J Cancer; 2017 Jun; 140(11):2473-2483. PubMed ID: 28224616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals.
    Tong X; Buelow K; Guha A; Rausch R; Yin L
    J Biol Chem; 2012 Jul; 287(30):25280-91. PubMed ID: 22669941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRY2 and FBXL3 Cooperatively Degrade c-MYC.
    Huber AL; Papp SJ; Chan AB; Henriksson E; Jordan SD; Kriebs A; Nguyen M; Wallace M; Li Z; Metallo CM; Lamia KA
    Mol Cell; 2016 Nov; 64(4):774-789. PubMed ID: 27840026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2.
    Parlak GC; Baris I; Gul S; Kavakli IH
    J Biol Chem; 2023 Dec; 299(12):105451. PubMed ID: 37951306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock.
    Chaves I; Nijman RM; Biernat MA; Bajek MI; Brand K; da Silva AC; Saito S; Yagita K; Eker AP; van der Horst GT
    PLoS One; 2011; 6(8):e23447. PubMed ID: 21858120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length.
    Gao P; Yoo SH; Lee KJ; Rosensweig C; Takahashi JS; Chen BP; Green CB
    J Biol Chem; 2013 Dec; 288(49):35277-86. PubMed ID: 24158435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.
    Khan SK; Xu H; Ukai-Tadenuma M; Burton B; Wang Y; Ueda HR; Liu AC
    J Biol Chem; 2012 Jul; 287(31):25917-26. PubMed ID: 22692217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.
    Ode KL; Ukai H; Susaki EA; Narumi R; Matsumoto K; Hara J; Koide N; Abe T; Kanemaki MT; Kiyonari H; Ueda HR
    Mol Cell; 2017 Jan; 65(1):176-190. PubMed ID: 28017587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum.
    Barberà M; Collantes-Alegre JM; Martínez-Torres D
    Insect Mol Biol; 2022 Apr; 31(2):159-169. PubMed ID: 34743397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals.
    Miller S; Aikawa Y; Sugiyama A; Nagai Y; Hara A; Oshima T; Amaike K; Kay SA; Itami K; Hirota T
    Cell Chem Biol; 2020 Sep; 27(9):1192-1198.e5. PubMed ID: 32502390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of interactions among circadian clock proteins via surface plasmon resonance.
    Kepsutlu B; Kizilel R; Kizilel S
    J Mol Recognit; 2014 Jul; 27(7):458-69. PubMed ID: 24895278
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Chan AB; Parico GCG; Fribourgh JL; Ibrahim LH; Bollong MJ; Partch CL; Lamia KA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34183418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian cryptochromes impinge on cell cycle progression in a circadian clock-independent manner.
    Destici E; Oklejewicz M; Saito S; van der Horst GT
    Cell Cycle; 2011 Nov; 10(21):3788-97. PubMed ID: 22033214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ratio of intracellular CRY proteins determines the clock period length.
    Li Y; Xiong W; Zhang EE
    Biochem Biophys Res Commun; 2016 Apr; 472(3):531-8. PubMed ID: 26966073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delay in feedback repression by cryptochrome 1 is required for circadian clock function.
    Ukai-Tadenuma M; Yamada RG; Xu H; Ripperger JA; Liu AC; Ueda HR
    Cell; 2011 Jan; 144(2):268-81. PubMed ID: 21236481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.