BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 25756610)

  • 1. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization.
    Papp SJ; Huber AL; Jordan SD; Kriebs A; Nguyen M; Moresco JJ; Yates JR; Lamia KA
    Elife; 2015 Mar; 4():. PubMed ID: 25756610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.
    Hirano A; Nakagawa T; Yoshitane H; Oyama M; Kozuka-Hata H; Lanjakornsiripan D; Fukada Y
    PLoS One; 2016; 11(4):e0154263. PubMed ID: 27123980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
    Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM
    J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1.
    Kang TH; Leem SH
    Nucleic Acids Res; 2014 Apr; 42(7):4427-34. PubMed ID: 24489120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical cholangiocarcinogenesis control by cryptochrome clock genes.
    Mteyrek A; Filipski E; Guettier C; Oklejewicz M; van der Horst GT; Okyar A; Lévi F
    Int J Cancer; 2017 Jun; 140(11):2473-2483. PubMed ID: 28224616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals.
    Tong X; Buelow K; Guha A; Rausch R; Yin L
    J Biol Chem; 2012 Jul; 287(30):25280-91. PubMed ID: 22669941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRY2 and FBXL3 Cooperatively Degrade c-MYC.
    Huber AL; Papp SJ; Chan AB; Henriksson E; Jordan SD; Kriebs A; Nguyen M; Wallace M; Li Z; Metallo CM; Lamia KA
    Mol Cell; 2016 Nov; 64(4):774-789. PubMed ID: 27840026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2.
    Parlak GC; Baris I; Gul S; Kavakli IH
    J Biol Chem; 2023 Dec; 299(12):105451. PubMed ID: 37951306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock.
    Chaves I; Nijman RM; Biernat MA; Bajek MI; Brand K; da Silva AC; Saito S; Yagita K; Eker AP; van der Horst GT
    PLoS One; 2011; 6(8):e23447. PubMed ID: 21858120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length.
    Gao P; Yoo SH; Lee KJ; Rosensweig C; Takahashi JS; Chen BP; Green CB
    J Biol Chem; 2013 Dec; 288(49):35277-86. PubMed ID: 24158435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.
    Khan SK; Xu H; Ukai-Tadenuma M; Burton B; Wang Y; Ueda HR; Liu AC
    J Biol Chem; 2012 Jul; 287(31):25917-26. PubMed ID: 22692217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.
    Ode KL; Ukai H; Susaki EA; Narumi R; Matsumoto K; Hara J; Koide N; Abe T; Kanemaki MT; Kiyonari H; Ueda HR
    Mol Cell; 2017 Jan; 65(1):176-190. PubMed ID: 28017587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum.
    Barberà M; Collantes-Alegre JM; Martínez-Torres D
    Insect Mol Biol; 2022 Apr; 31(2):159-169. PubMed ID: 34743397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals.
    Miller S; Aikawa Y; Sugiyama A; Nagai Y; Hara A; Oshima T; Amaike K; Kay SA; Itami K; Hirota T
    Cell Chem Biol; 2020 Sep; 27(9):1192-1198.e5. PubMed ID: 32502390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of interactions among circadian clock proteins via surface plasmon resonance.
    Kepsutlu B; Kizilel R; Kizilel S
    J Mol Recognit; 2014 Jul; 27(7):458-69. PubMed ID: 24895278
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Chan AB; Parico GCG; Fribourgh JL; Ibrahim LH; Bollong MJ; Partch CL; Lamia KA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34183418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian cryptochromes impinge on cell cycle progression in a circadian clock-independent manner.
    Destici E; Oklejewicz M; Saito S; van der Horst GT
    Cell Cycle; 2011 Nov; 10(21):3788-97. PubMed ID: 22033214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ratio of intracellular CRY proteins determines the clock period length.
    Li Y; Xiong W; Zhang EE
    Biochem Biophys Res Commun; 2016 Apr; 472(3):531-8. PubMed ID: 26966073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delay in feedback repression by cryptochrome 1 is required for circadian clock function.
    Ukai-Tadenuma M; Yamada RG; Xu H; Ripperger JA; Liu AC; Ueda HR
    Cell; 2011 Jan; 144(2):268-81. PubMed ID: 21236481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.