These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. De Bundel D; Gangarossa G; Biever A; Bonnefont X; Valjent E Front Behav Neurosci; 2013; 7():152. PubMed ID: 24187535 [TBL] [Abstract][Full Text] [Related]
24. Suppression of circadian clock protein cryptochrome 2 promotes osteoarthritis. Bekki H; Duffy T; Okubo N; Olmer M; Alvarez-Garcia O; Lamia K; Kay S; Lotz M Osteoarthritis Cartilage; 2020 Jul; 28(7):966-976. PubMed ID: 32339698 [TBL] [Abstract][Full Text] [Related]
25. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Miller S; Kesherwani M; Chan P; Nagai Y; Yagi M; Cope J; Tama F; Kay SA; Hirota T Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2203936119. PubMed ID: 36161947 [TBL] [Abstract][Full Text] [Related]
26. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice. Yamanaka Y; Suzuki Y; Todo T; Honma K; Honma S Genes Cells; 2010 Oct; 15(10):1063-71. PubMed ID: 20825493 [TBL] [Abstract][Full Text] [Related]
27. JMJD5 links CRY1 function and proteasomal degradation. Saran AR; Kalinowska D; Oh S; Janknecht R; DiTacchio L PLoS Biol; 2018 Nov; 16(11):e2006145. PubMed ID: 30500822 [TBL] [Abstract][Full Text] [Related]
28. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. Hashiramoto A; Yamane T; Tsumiyama K; Yoshida K; Komai K; Yamada H; Yamazaki F; Doi M; Okamura H; Shiozawa S J Immunol; 2010 Feb; 184(3):1560-5. PubMed ID: 20042581 [TBL] [Abstract][Full Text] [Related]
29. Differential roles for cryptochromes in the mammalian retinal clock. Wong JCY; Smyllie NJ; Banks GT; Pothecary CA; Barnard AR; Maywood ES; Jagannath A; Hughes S; van der Horst GTJ; MacLaren RE; Hankins MW; Hastings MH; Nolan PM; Foster RG; Peirson SN FASEB J; 2018 Aug; 32(8):4302-4314. PubMed ID: 29561690 [TBL] [Abstract][Full Text] [Related]
30. Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation. Miller S; Srivastava A; Nagai Y; Aikawa Y; Tama F; Hirota T Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172584 [TBL] [Abstract][Full Text] [Related]
31. Role of heterozygous and homozygous alleles in cryptochrome-deficient mice. Oda Y; Takasu NN; Ohno SN; Shirakawa Y; Sugimura M; Nakamura TJ; Nakamura W Neurosci Lett; 2022 Feb; 772():136415. PubMed ID: 34954114 [TBL] [Abstract][Full Text] [Related]
32. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Yuan Q; Metterville D; Briscoe AD; Reppert SM Mol Biol Evol; 2007 Apr; 24(4):948-55. PubMed ID: 17244599 [TBL] [Abstract][Full Text] [Related]
34. A methylbenzimidazole derivative regulates mammalian circadian rhythms by targeting Cryptochrome proteins. Yagi M; Miller S; Nagai Y; Inuki S; Sato A; Hirota T F1000Res; 2022; 11():1016. PubMed ID: 36226040 [No Abstract] [Full Text] [Related]
35. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Hirano A; Yumimoto K; Tsunematsu R; Matsumoto M; Oyama M; Kozuka-Hata H; Nakagawa T; Lanjakornsiripan D; Nakayama KI; Fukada Y Cell; 2013 Feb; 152(5):1106-18. PubMed ID: 23452856 [TBL] [Abstract][Full Text] [Related]
36. DNA damage-specific control of cell death by cryptochrome in p53-mutant ras-transformed cells. Lee JH; Gaddameedhi S; Ozturk N; Ye R; Sancar A Cancer Res; 2013 Jan; 73(2):785-91. PubMed ID: 23149912 [TBL] [Abstract][Full Text] [Related]
37. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Zhang EE; Liu Y; Dentin R; Pongsawakul PY; Liu AC; Hirota T; Nusinow DA; Sun X; Landais S; Kodama Y; Brenner DA; Montminy M; Kay SA Nat Med; 2010 Oct; 16(10):1152-6. PubMed ID: 20852621 [TBL] [Abstract][Full Text] [Related]
38. Phosphorylation of CRY1 Serine 71 Alters Voluntary Activity but Not Circadian Rhythms In Vivo. Vaughan M; Jordan SD; Duglan D; Chan AB; Afetian M; Lamia KA J Biol Rhythms; 2019 Aug; 34(4):401-409. PubMed ID: 31258021 [TBL] [Abstract][Full Text] [Related]
39. Nitrogen regulates CRY1 phosphorylation and circadian clock input pathways. Zhou YH; Zhang ZW; Zheng C; Yuan S; He Y Plant Signal Behav; 2016 Sep; 11(9):e1219830. PubMed ID: 27617369 [TBL] [Abstract][Full Text] [Related]
40. Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock. Engelen E; Janssens RC; Yagita K; Smits VA; van der Horst GT; Tamanini F PLoS One; 2013; 8(2):e56623. PubMed ID: 23418588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]