These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25756654)

  • 1. Exact learning of RNA energy parameters from structure.
    Chitsaz H; Aminisharifabad M
    J Comput Biol; 2015 Jun; 22(6):463-73. PubMed ID: 25756654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RNA Newton polytope and learnability of energy parameters.
    Forouzmand E; Chitsaz H
    Bioinformatics; 2013 Jul; 29(13):i300-7. PubMed ID: 23812998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic characterization of single mismatches found in naturally occurring RNA.
    Davis AR; Znosko BM
    Biochemistry; 2007 Nov; 46(46):13425-36. PubMed ID: 17958380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric analysis of RNA branching configurations.
    Hower V; Heitsch CE
    Bull Math Biol; 2011 Apr; 73(4):754-76. PubMed ID: 21207176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting stacking interaction parameters for RNA from the data set of native structures.
    Dima RI; Hyeon C; Thirumalai D
    J Mol Biol; 2005 Mar; 347(1):53-69. PubMed ID: 15733917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical potentials for hairpin and internal loops improve the accuracy of the predicted RNA structure.
    Gardner DP; Ren P; Ozer S; Gutell RR
    J Mol Biol; 2011 Oct; 413(2):473-83. PubMed ID: 21889515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moments of the Boltzmann distribution for RNA secondary structures.
    Miklós I; Meyer IM; Nagy B
    Bull Math Biol; 2005 Sep; 67(5):1031-47. PubMed ID: 15998494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs.
    Ieong S; Kao MY; Lam TW; Sung WK; Yiu SM
    J Comput Biol; 2003; 10(6):981-95. PubMed ID: 14980021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model.
    Waldispühl J; Clote P
    J Comput Biol; 2007 Mar; 14(2):190-215. PubMed ID: 17456015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation.
    Layton DM; Bundschuh R
    Nucleic Acids Res; 2005; 33(2):519-24. PubMed ID: 15673712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorics of saturated secondary structures of RNA.
    Clote P
    J Comput Biol; 2006 Nov; 13(9):1640-57. PubMed ID: 17147486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic characterization of naturally occurring RNA single mismatches with G-U nearest neighbors.
    Davis AR; Znosko BM
    Biochemistry; 2008 Sep; 47(38):10178-87. PubMed ID: 18754680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic characterization of the complete set of sequence symmetric tandem mismatches in RNA and an improved model for predicting the free energy contribution of sequence asymmetric tandem mismatches.
    Christiansen ME; Znosko BM
    Biochemistry; 2008 Apr; 47(14):4329-36. PubMed ID: 18330995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.
    Parisien M; Major F
    Nature; 2008 Mar; 452(7183):51-5. PubMed ID: 18322526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energetics of small internal loops in RNA.
    Schroeder SJ; Burkard ME; Turner DH
    Biopolymers; 1999-2000; 52(4):157-67. PubMed ID: 11295748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revolutions in RNA secondary structure prediction.
    Mathews DH
    J Mol Biol; 2006 Jun; 359(3):526-32. PubMed ID: 16500677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary rate variation and RNA secondary structure prediction.
    Knudsen B; Andersen ES; Damgaard C; Kjems J; Gorodkin J
    Comput Biol Chem; 2004 Jul; 28(3):219-26. PubMed ID: 15261152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.