These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25756677)

  • 1. In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications.
    Khamis K; Sorensen JP; Bradley C; Hannah DM; Lapworth DJ; Stevens R
    Environ Sci Process Impacts; 2015 Apr; 17(4):740-52. PubMed ID: 25756677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values.
    Sorensen JPR; Baker A; Cumberland SA; Lapworth DJ; MacDonald AM; Pedley S; Taylor RG; Ward JST
    Sci Total Environ; 2018 May; 622-623():1250-1257. PubMed ID: 29890592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater.
    Nowicki S; Lapworth DJ; Ward JST; Thomson P; Charles K
    Sci Total Environ; 2019 Jan; 646():782-791. PubMed ID: 30064104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling organic matter and nutrient biogeochemistry in groundwater-fed rivers under baseflow conditions: Uncertainty in in situ high-frequency analysis.
    Bieroza MZ; Heathwaite AL
    Sci Total Environ; 2016 Dec; 572():1520-1533. PubMed ID: 26897611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water.
    Ward JST; Lapworth DJ; Read DS; Pedley S; Banda ST; Monjerezi M; Gwengweya G; MacDonald AM
    Sci Total Environ; 2021 Jan; 750():141284. PubMed ID: 33182170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators.
    Ward JST; Lapworth DJ; Read DS; Pedley S; Banda ST; Monjerezi M; Gwengweya G; MacDonald AM
    Sci Total Environ; 2020 Nov; 744():140674. PubMed ID: 32755770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water.
    Sorensen JPR; Vivanco A; Ascott MJ; Gooddy DC; Lapworth DJ; Read DS; Rushworth CM; Bucknall J; Herbert K; Karapanos I; Gumm LP; Taylor RG
    Water Res; 2018 Jun; 137():301-309. PubMed ID: 29554534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies.
    Sorensen JP; Lapworth DJ; Marchant BP; Nkhuwa DC; Pedley S; Stuart ME; Bell RA; Chirwa M; Kabika J; Liemisa M; Chibesa M
    Water Res; 2015 Sep; 81():38-46. PubMed ID: 26026711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms.
    Sorensen JPR; Nayebare J; Carr AF; Lyness R; Campos LC; Ciric L; Goodall T; Kulabako R; Curran CMR; MacDonald AM; Owor M; Read DS; Taylor RG
    Water Res; 2021 Nov; 206():117734. PubMed ID: 34655933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications as real-time faecal indicators.
    Sorensen JPR; Carr AF; Nayebare J; Diongue DML; Pouye A; Roffo R; Gwengweya G; Ward JST; Kanoti J; Okotto-Okotto J; van der Marel L; Ciric L; Faye SC; Gaye CB; Goodall T; Kulabako R; Lapworth DJ; MacDonald AM; Monjerezi M; Olago D; Owor M; Read DS; Taylor RG
    Sci Rep; 2020 Sep; 10(1):15379. PubMed ID: 32958794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of field fluorometers.
    Gutierrez A; Zhang Y; Assaad A; France X; Adouani N; Pons MN
    Water Sci Technol; 2014; 70(8):1335-40. PubMed ID: 25353937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study: The deployment of a novel in situ fluorimeter for monitoring biological contamination within the urban surface waters of Kolkata, India.
    Fox BG; Thorn RMS; Dutta TK; Bowes MJ; Read DS; Reynolds DM
    Sci Total Environ; 2022 Oct; 842():156848. PubMed ID: 35750190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence properties of some farm wastes: implications for water quality monitoring.
    Baker A
    Water Res; 2002 Jan; 36(1):189-95. PubMed ID: 11766794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ fluorescence spectroscopy indicates total bacterial abundance and dissolved organic carbon.
    Sorensen JPR; Diaw MT; Pouye A; Roffo R; Diongue DML; Faye SC; Gaye CB; Fox BG; Goodall T; Lapworth DJ; MacDonald AM; Read DS; Ciric L; Taylor RG
    Sci Total Environ; 2020 Oct; 738():139419. PubMed ID: 32521357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental impacts of dredging and other sediment disturbances on corals: a review.
    Erftemeijer PL; Riegl B; Hoeksema BW; Todd PA
    Mar Pollut Bull; 2012 Sep; 64(9):1737-65. PubMed ID: 22682583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence.
    Sorensen JPR; Sadhu A; Sampath G; Sugden S; Dutta Gupta S; Lapworth DJ; Marchant BP; Pedley S
    Water Res; 2016 Jan; 88():923-932. PubMed ID: 26618806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs.
    Chung SW; Lee HS
    Water Sci Technol; 2009; 59(1):47-55. PubMed ID: 19151485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study.
    Rymszewicz A; O'Sullivan JJ; Bruen M; Turner JN; Lawler DM; Conroy E; Kelly-Quinn M
    J Environ Manage; 2017 Sep; 199():99-108. PubMed ID: 28527380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining in-situ fluorometry and distributed rainfall data provides new insights into natural organic matter transport dynamics in an urban river.
    Croghan D; Khamis K; Bradley C; Van Loon AF; Sadler J; Hannah DM
    Sci Total Environ; 2021 Feb; 755(Pt 1):142731. PubMed ID: 33097245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.