BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25757098)

  • 1. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors.
    Pickles BJ; Twieg BD; O'Neill GA; Mohn WW; Simard SW
    New Phytol; 2015 Aug; 207(3):858-71. PubMed ID: 25757098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests.
    Teste FP; Simard SW
    Oecologia; 2008 Nov; 158(2):193-203. PubMed ID: 18781333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.
    Kazantseva O; Bingham M; Simard SW; Berch SM
    Mycorrhiza; 2009 Nov; 20(1):51-66. PubMed ID: 19572155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum.
    Grove S; Saarman NP; Gilbert GS; Faircloth B; Haubensak KA; Parker IM
    Ecol Appl; 2019 Apr; 29(3):e01867. PubMed ID: 30710404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils.
    Pickles BJ; Gorzelak MA; Green DS; Egger KN; Massicotte HB
    Mycorrhiza; 2015 Oct; 25(7):517-31. PubMed ID: 25694036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir.
    Kranabetter JM; Stoehr M; O'Neill GA
    New Phytol; 2015 May; 206(3):1135-1144. PubMed ID: 25623442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings?
    Cline ET; Ammirati JF; Edmonds RL
    New Phytol; 2005 Jun; 166(3):993-1009. PubMed ID: 15869658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of
    Pickles BJ; Wilhelm R; Asay AK; Hahn AS; Simard SW; Mohn WW
    New Phytol; 2017 Apr; 214(1):400-411. PubMed ID: 27870059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings.
    Schoonmaker AL; Teste FP; Simard SW; Guy RD
    Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.
    Wen Z; Shi L; Tang Y; Hong L; Xue J; Xing J; Chen Y; Nara K
    Mycorrhiza; 2018 Jan; 28(1):49-58. PubMed ID: 28942552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergence in ectomycorrhizal communities with foreign Douglas-fir populations and implications for assisted migration.
    Kranabetter JM; Stoehr MU; O'Neill GA
    Ecol Appl; 2012 Mar; 22(2):550-60. PubMed ID: 22611853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings.
    Bingham MA; Simard SW
    Mycorrhiza; 2012 May; 22(4):317-26. PubMed ID: 21822679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer.
    Teste FP; Simard SW; Durall DM; Guy RD; Jones MD; Schoonmaker AL
    Ecology; 2009 Oct; 90(10):2808-22. PubMed ID: 19886489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress.
    Dučić T; Parladé J; Polle A
    Mycorrhiza; 2008 Jul; 18(5):227-239. PubMed ID: 18437431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential role of ectomycorrhizal fungi in determining Douglas-fir resistance to defoliation by the western spruce budworm (Lepidoptera: Tortricidae).
    Palermo BL; Clancy KM; Koch GW
    J Econ Entomol; 2003 Jun; 96(3):783-91. PubMed ID: 12852617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting.
    Barker JS; Simard SW; Jones MD; Durall DM
    Oecologia; 2013 Aug; 172(4):1179-89. PubMed ID: 23263530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current and potential distribution of the ectomycorrhizal fungus Suillus lakei ((Murrill) A.H. Sm. & Thiers) in its invasion range.
    Pietras M; Litkowiec M; Gołębiewska J
    Mycorrhiza; 2018 Aug; 28(5-6):467-475. PubMed ID: 29766279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers.
    Teste FP; Karst J; Jones MD; Simard SW; Durall DM
    Mycorrhiza; 2006 Dec; 17(1):51-65. PubMed ID: 17106724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada.
    Defrenne CE; Philpott TJ; Guichon SHA; Roach WJ; Pickles BJ; Simard SW
    Front Plant Sci; 2019; 10():643. PubMed ID: 31191571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings.
    Müller T; Ensminger I; Schmid KJ
    BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.