These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25757245)

  • 1. Applying Agrep to r-NSA to solve multiple sequences approximate matching.
    Ni B; Wong MH; Lam CF; Leung KS
    Int J Data Min Bioinform; 2014; 9(4):358-85. PubMed ID: 25757245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Eulerian path approach to global multiple alignment for DNA sequences.
    Zhang Y; Waterman MS
    J Comput Biol; 2003; 10(6):803-19. PubMed ID: 14980012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressed pattern matching in DNA sequences.
    Chen L; Lu S; Ram J
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():62-8. PubMed ID: 16448000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast Boyer-Moore type pattern matching algorithm for highly similar sequences.
    Ben Nsira N; Lecroq T; Elloumi M
    Int J Data Min Bioinform; 2015; 13(3):266-88. PubMed ID: 26547980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment of biological sequences with quality scores.
    Na JC; Roh K; Apostolico A; Park K
    Int J Bioinform Res Appl; 2009; 5(1):97-113. PubMed ID: 19136367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The generalised k-Truncated Suffix Tree for time-and space-efficient searches in multiple DNA or protein sequences.
    Schulz MH; Bauer S; Robinson PN
    Int J Bioinform Res Appl; 2008; 4(1):81-95. PubMed ID: 18283030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ALFRED: A Practical Method for Alignment-Free Distance Computation.
    Thankachan SV; Chockalingam SP; Liu Y; Apostolico A; Aluru S
    J Comput Biol; 2016 Jun; 23(6):452-60. PubMed ID: 27138275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm.
    Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS
    Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algorithm to solve the motif alignment problem for approximate nested tandem repeats in biological sequences.
    Matroud AA; Tuffley CP; Hendy MD
    J Comput Biol; 2011 Sep; 18(9):1211-8. PubMed ID: 21899426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Provably Efficient Algorithm for the k-Mismatch Average Common Substring Problem.
    Thankachan SV; Apostolico A; Aluru S
    J Comput Biol; 2016 Jun; 23(6):472-82. PubMed ID: 27058840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment method for spectrograms of DNA sequences.
    Bucur A; van Leeuwen J; Dimitrova N; Mittal C
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):3-9. PubMed ID: 19789120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Space efficient computation of rare maximal exact matches between multiple sequences.
    Ohlebusch E; Kurtz S
    J Comput Biol; 2008 May; 15(4):357-77. PubMed ID: 18361760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating approximate subsequence search on large protein sequence databases.
    Yang J; Wang W; Xia Y; Yu PS
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():207-16. PubMed ID: 15838137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast large scale oligonucleotide selection using the longest common factor approach.
    Rahmann S
    J Bioinform Comput Biol; 2003 Jul; 1(2):343-61. PubMed ID: 15290776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Efficient Techniques to Find Approximate Overlaps between Sequences.
    Haj Rachid M
    Biomed Res Int; 2017; 2017():2731385. PubMed ID: 28293632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WindowMasker: window-based masker for sequenced genomes.
    Morgulis A; Gertz EM; Schäffer AA; Agarwala R
    Bioinformatics; 2006 Jan; 22(2):134-41. PubMed ID: 16287941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear-time computation of minimal absent words using suffix array.
    Barton C; Heliou A; Mouchard L; Pissis SP
    BMC Bioinformatics; 2014 Dec; 15(1):388. PubMed ID: 25526884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian approach to discriminate between alternative DNA sequence segmentations.
    Husmeier D; Wright F
    Bioinformatics; 2002 Feb; 18(2):226-34. PubMed ID: 11847070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.