BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25757413)

  • 1. Bandgap engineering of coal-derived graphene quantum dots.
    Ye R; Peng Z; Metzger A; Lin J; Mann JA; Huang K; Xiang C; Fan X; Samuel EL; Alemany LB; Martí AA; Tour JM
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7041-8. PubMed ID: 25757413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots.
    Gu J; Zhang X; Pang A; Yang J
    Nanotechnology; 2016 Apr; 27(16):165704. PubMed ID: 26964866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile and Efficient Fabrication of Bandgap Tunable Carbon Quantum Dots Derived From Anthracite and Their Photoluminescence Properties.
    Jia J; Sun Y; Zhang Y; Liu Q; Cao J; Huang G; Xing B; Zhang C; Zhang L; Cao Y
    Front Chem; 2020; 8():123. PubMed ID: 32181240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals.
    Dong Y; Lin J; Chen Y; Fu F; Chi Y; Chen G
    Nanoscale; 2014 Jul; 6(13):7410-5. PubMed ID: 24875280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of excitation-independent photoluminescent graphene quantum dots with visible-light excitation/emission for cell imaging.
    Chen S; Hai X; Xia C; Chen XW; Wang JH
    Chemistry; 2013 Nov; 19(47):15918-23. PubMed ID: 24123493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of N, F and S co-doped graphene quantum dots.
    Kundu S; Yadav RM; Narayanan TN; Shelke MV; Vajtai R; Ajayan PM; Pillai VK
    Nanoscale; 2015 Jul; 7(27):11515-9. PubMed ID: 26087457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots.
    Russo P; Hu A; Compagnini G; Duley WW; Zhou NY
    Nanoscale; 2014 Feb; 6(4):2381-9. PubMed ID: 24435549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids.
    Sasikala SP; Henry L; Yesilbag Tonga G; Huang K; Das R; Giroire B; Marre S; Rotello VM; Penicaud A; Poulin P; Aymonier C
    ACS Nano; 2016 May; 10(5):5293-303. PubMed ID: 27135862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier.
    Wang Z; Xia J; Zhou C; Via B; Xia Y; Zhang F; Li Y; Xia L; Tang J
    Colloids Surf B Biointerfaces; 2013 Dec; 112():192-6. PubMed ID: 23974005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation.
    Santiago SR; Lin TN; Yuan CT; Shen JL; Huang HY; Lin CA
    Phys Chem Chem Phys; 2016 Aug; 18(32):22599-605. PubMed ID: 27476476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media.
    Ju J; Chen W
    Biosens Bioelectron; 2014 Aug; 58():219-25. PubMed ID: 24650437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions.
    Russo P; Liang R; Jabari E; Marzbanrad E; Toyserkani E; Zhou YN
    Nanoscale; 2016 Apr; 8(16):8863-77. PubMed ID: 27071944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size Fractionation of Fluorescent Graphene Quantum Dots Using a Cross-Flow Membrane Filtration System.
    Yim SG; Kim YJ; Kang YE; Moon BK; Jung ES; Yang SY
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30469312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focusing on luminescent graphene quantum dots: current status and future perspectives.
    Li L; Wu G; Yang G; Peng J; Zhao J; Zhu JJ
    Nanoscale; 2013 May; 5(10):4015-39. PubMed ID: 23579482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging.
    Nurunnabi M; Khatun Z; Nafiujjaman M; Lee DG; Lee YK
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8246-53. PubMed ID: 23879568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation.
    Calabro RL; Yang DS; Kim DY
    J Colloid Interface Sci; 2018 Oct; 527():132-140. PubMed ID: 29787949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the formation mechanism of graphene quantum dots and the size effect on their electrochemical behaviors.
    Liu Y; Wang R; Lang J; Yan X
    Phys Chem Chem Phys; 2015 Jun; 17(21):14028-35. PubMed ID: 25953407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the cellular internalization and cytotoxicity of graphene quantum dots.
    Wu C; Wang C; Han T; Zhou X; Guo S; Zhang J
    Adv Healthc Mater; 2013 Dec; 2(12):1613-9. PubMed ID: 23703800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of edge geometry and magnetic interaction in opening bandgap of low-dimensional graphene.
    Zhu Y; Lian J; Jiang Q
    Chemphyschem; 2014 Apr; 15(5):958-65. PubMed ID: 24616008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrogen doping on the photoluminescence intensity of graphene quantum dots.
    Santiago SRM; Wong YA; Lin TN; Chang CH; Yuan CT; Shen JL
    Opt Lett; 2017 Sep; 42(18):3642-3645. PubMed ID: 28914922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.