BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25757537)

  • 1. Conformational Change Near the Redox Center of Dihydrolipoamide Dehydrogenase Induced by NAD(+) to Regulate the Enzyme Activity.
    Fukamichi T; Nishimoto E
    J Fluoresc; 2015 May; 25(3):577-83. PubMed ID: 25757537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the oxidation-reduction potential of the flavin in lipoamide dehydrogenase from Escherichia coli by alteration of a nearby charged residue, K53R.
    Maeda-Yorita K; Russell GC; Guest JR; Massey V; Williams CH
    Biochemistry; 1994 May; 33(20):6213-20. PubMed ID: 8193135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of human dihydrolipoamide dehydrogenase: role of lysine-54 and glutamate-192 in stabilizing the thiolate-FAD intermediate.
    Liu TC; Hong YS; Korotchkina LG; Vettakkorumakankav NN; Patel MS
    Protein Expr Purif; 1999 Jun; 16(1):27-39. PubMed ID: 10336857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level.
    Argyrou A; Sun G; Palfey BA; Blanchard JS
    Biochemistry; 2003 Feb; 42(7):2218-28. PubMed ID: 12590611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S.
    Hopkins N; Williams CH
    Biochemistry; 1995 Sep; 34(37):11757-65. PubMed ID: 7547908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 A resolution.
    Mattevi A; Obmolova G; Sokatch JR; Betzel C; Hol WG
    Proteins; 1992 Aug; 13(4):336-51. PubMed ID: 1325638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Redox properties of the FAD and interactions with pyridine nucleotides.
    Hopkins N; Williams CH
    Biochemistry; 1995 Sep; 34(37):11766-76. PubMed ID: 7547909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structure of lipoamide dehydrogenase from Pseudomonas fluorescens at 2.8 A resolution. Analysis of redox and thermostability properties.
    Mattevi A; Obmolova G; Kalk KH; van Berkel WJ; Hol WG
    J Mol Biol; 1993 Apr; 230(4):1200-15. PubMed ID: 8487301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations.
    Brautigam CA; Chuang JL; Tomchick DR; Machius M; Chuang DT
    J Mol Biol; 2005 Jul; 350(3):543-52. PubMed ID: 15946682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of nitrofuran compounds by heart lipoamide dehydrogenase: role of flavin and the reactive disulfide groups.
    Sreider CM; Grinblat L; Stoppani AO
    Biochem Int; 1992 Oct; 28(2):323-34. PubMed ID: 1456954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FAD-mediated enzymatic conversion of NAD+ to NADH: application to chiral synthesis of L-lactate.
    Leonida MD; Sobolov SB; Fry AJ
    Bioorg Med Chem Lett; 1998 Oct; 8(20):2819-24. PubMed ID: 9873629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Diaphorase reactions of lipoamide dehydrogenases from the adrenal ketoglutarate dehydrogenase complex].
    Chenas NK; Butkus AA; Kulis IuIu
    Biokhimiia; 1985 Jun; 50(6):1018-23. PubMed ID: 3839697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FAD insertion is essential for attaining the assembly competence of the dihydrolipoamide dehydrogenase (E3) monomer from Escherichia coli.
    Lindsay H; Beaumont E; Richards SD; Kelly SM; Sanderson SJ; Price NC; Lindsay JG
    J Biol Chem; 2000 Nov; 275(47):36665-70. PubMed ID: 10970889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of lipoamide dehydrogenase altered by site-directed mutagenesis at a key residue (I184Y) in the pyridine nucleotide binding domain.
    Maeda-Yorita K; Russell GC; Guest JR; Massey V; Williams CH
    Biochemistry; 1991 Dec; 30(51):11788-95. PubMed ID: 1751496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of
    Glasser NR; Wang BX; Hoy JA; Newman DK
    J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species.
    Bunik VI; Sievers C
    Eur J Biochem; 2002 Oct; 269(20):5004-15. PubMed ID: 12383259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nicotinamide adenine dinucleotide on the oxidation-reduction potentials of lipoamide dehydrogenase from pig heart.
    Maeda-Yorita K; Aki K
    J Biochem; 1984 Sep; 96(3):683-90. PubMed ID: 6548741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The moonlighting activities of dihydrolipoamide dehydrogenase: Biotechnological and biomedical applications.
    Fleminger G; Dayan A
    J Mol Recognit; 2021 Nov; 34(11):e2924. PubMed ID: 34164859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.