These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25757741)

  • 61. Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants.
    Joshi R; Paul M; Kumar A; Pandey D
    Gene; 2019 Sep; 714():144004. PubMed ID: 31351124
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Silicon's Role in Abiotic and Biotic Plant Stresses.
    Debona D; Rodrigues FA; Datnoff LE
    Annu Rev Phytopathol; 2017 Aug; 55():85-107. PubMed ID: 28504920
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses.
    Zhuang WB; Li YH; Shu XC; Pu YT; Wang XJ; Wang T; Wang Z
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110833
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea.
    Waqas MA; Kaya C; Riaz A; Farooq M; Nawaz I; Wilkes A; Li Y
    Front Plant Sci; 2019; 10():1336. PubMed ID: 31736993
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses.
    Yu B; Chen M; Grin I; Ma C
    Adv Exp Med Biol; 2020; 1241():167-194. PubMed ID: 32383121
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2.
    Li W; Dickman MB
    Biotechnol Lett; 2004 Jan; 26(2):87-95. PubMed ID: 15000473
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis.
    Wang B; Zhang H; Huai J; Peng F; Wu J; Lin R; Fang X
    Nat Chem Biol; 2022 Dec; 18(12):1361-1369. PubMed ID: 36376475
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ca
    Dong Q; Wallrad L; Almutairi BO; Kudla J
    J Integr Plant Biol; 2022 Feb; 64(2):287-300. PubMed ID: 35048537
    [TBL] [Abstract][Full Text] [Related]  

  • 70. To grow or not to grow: a stressful decision for plants.
    Dolferus R
    Plant Sci; 2014 Dec; 229():247-261. PubMed ID: 25443851
    [TBL] [Abstract][Full Text] [Related]  

  • 71.
    Wu R; Xu B; Shi F
    Front Plant Sci; 2022; 13():907674. PubMed ID: 35720590
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of Proteomics in Crop Stress Tolerance.
    Ahmad P; Abdel Latef AA; Rasool S; Akram NA; Ashraf M; Gucel S
    Front Plant Sci; 2016; 7():1336. PubMed ID: 27660631
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sugar compartmentation as an environmental stress adaptation strategy in plants.
    Yamada K; Osakabe Y
    Semin Cell Dev Biol; 2018 Nov; 83():106-114. PubMed ID: 29287835
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance.
    Zhang Y; Zhou Y; Zhu W; Liu J; Cheng F
    Front Plant Sci; 2022; 13():965745. PubMed ID: 36311129
    [TBL] [Abstract][Full Text] [Related]  

  • 75. OsCBSCBSPB4 is a Two Cystathionine-β-Synthase Domain-containing Protein from Rice that Functions in Abiotic Stress Tolerance.
    Kumar R; Subba A; Kaur C; Ariyadasa TU; Sharan A; Pareek A; Sopory SK; Singla-Pareek SL
    Curr Genomics; 2018 Jan; 19(1):50-59. PubMed ID: 29491732
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Light acts as a stressor and influences abiotic and biotic stress responses in plants.
    Roeber VM; Bajaj I; Rohde M; Schmülling T; Cortleven A
    Plant Cell Environ; 2021 Mar; 44(3):645-664. PubMed ID: 33190307
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants.
    Jha SK; Sharma M; Pandey GK
    Curr Genomics; 2016 Aug; 17(4):315-29. PubMed ID: 27499681
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress.
    González-Hernández AI; Scalschi L; Vicedo B; Marcos-Barbero EL; Morcuende R; Camañes G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328394
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Strategies to ameliorate abiotic stress-induced plant senescence.
    Gepstein S; Glick BR
    Plant Mol Biol; 2013 Aug; 82(6):623-33. PubMed ID: 23595200
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The triangular space of abiotic stress tolerance in woody species: a unified trade-off model.
    Puglielli G; Hutchings MJ; Laanisto L
    New Phytol; 2021 Feb; 229(3):1354-1362. PubMed ID: 32989754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.