These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25757741)

  • 81. Systematic Analysis of Tobacco CrRLK1L Family Genes and Functional Identification of
    Li X; Guo C; Wang Q; Li Z; Cai J; Wu D; Li Y; Yang A; Guo Y; Gao J; Wen L; Pu W
    Front Plant Sci; 2022; 13():838857. PubMed ID: 35783983
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses.
    Radhakrishnan R
    Physiol Mol Biol Plants; 2019 Sep; 25(5):1107-1119. PubMed ID: 31564775
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms.
    Rejeb IB; Pastor V; Mauch-Mani B
    Plants (Basel); 2014 Oct; 3(4):458-75. PubMed ID: 27135514
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A brief review on oryzacystatin: a potent phytocystatin for crop management.
    Premachandran K; Srinivasan TS
    Mol Biol Rep; 2023 Feb; 50(2):1799-1807. PubMed ID: 36471210
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field.
    Weinhold A; Karimi Dorcheh E; Li R; Rameshkumar N; Baldwin IT
    Elife; 2018 Apr; 7():. PubMed ID: 29661271
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Meta-analysis of the effect of expression of MYB transcription factor genes on abiotic stress.
    Han Z; Shang X; Shao L; Wang Y; Zhu X; Fang W; Ma Y
    PeerJ; 2021; 9():e11268. PubMed ID: 34164229
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Antisense-mediated S-adenosyl-L-methionine decarboxylase silencing affects heat stress responses of tobacco plants.
    Mellidou I; Karamanoli K; Constantinidou HA; Roubelakis-Angelakis KA
    Funct Plant Biol; 2020 Jun; 47(7):651-658. PubMed ID: 32375995
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Heat-Killed Tobacco Mosaic Virus Mitigates Plant Abiotic Stress Symptoms.
    Augustine SM; Tzigos S; Snowdon R
    Microorganisms; 2022 Dec; 11(1):. PubMed ID: 36677379
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators.
    Khan MIR; Ashfaque F; Chhillar H; Irfan M; Khan NA
    Plant Physiol Biochem; 2021 May; 162():36-47. PubMed ID: 33667965
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.
    Kissoudis C; van de Wiel C; Visser RG; van der Linden G
    Front Plant Sci; 2014; 5():207. PubMed ID: 24904607
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance.
    Hoque TS; Hossain MA; Mostofa MG; Burritt DJ; Fujita M; Tran LS
    Front Plant Sci; 2016; 7():1341. PubMed ID: 27679640
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors.
    Nowicka B
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559545
    [TBL] [Abstract][Full Text] [Related]  

  • 93. COST1 balances plant growth and stress tolerance via attenuation of autophagy.
    Bao Y; Bassham DC
    Autophagy; 2020 Jun; 16(6):1157-1158. PubMed ID: 32268813
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Priming with Small Molecule-Based Biostimulants to Improve Abiotic Stress Tolerance in
    Hernándiz AE; Aucique-Perez CE; Ćavar Zeljković S; Štefelová N; Salcedo Sarmiento S; Spíchal L; De Diego N
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631712
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Tissue Culture-A Sustainable Approach to Explore Plant Stresses.
    Wijerathna-Yapa A; Hiti-Bandaralage J
    Life (Basel); 2023 Mar; 13(3):. PubMed ID: 36983935
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Olive Nutritional Status and Tolerance to Biotic and Abiotic Stresses.
    Fernández-Escobar R
    Front Plant Sci; 2019; 10():1151. PubMed ID: 31608093
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering.
    Perincherry L; Stępień Ł; Vasudevan SE
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769374
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Impact of polyploidy on plant tolerance to abiotic and biotic stresses.
    Tossi VE; Martínez Tosar LJ; Laino LE; Iannicelli J; Regalado JJ; Escandón AS; Baroli I; Causin HF; Pitta-Álvarez SI
    Front Plant Sci; 2022; 13():869423. PubMed ID: 36072313
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system.
    Zargar SM; Mahajan R; Bhat JA; Nazir M; Deshmukh R
    3 Biotech; 2019 Mar; 9(3):73. PubMed ID: 30800584
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions.
    Houston K; Tucker MR; Chowdhury J; Shirley N; Little A
    Front Plant Sci; 2016; 7():984. PubMed ID: 27559336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.