These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Kaufmann K; Muiño JM; Østerås M; Farinelli L; Krajewski P; Angenent GC Nat Protoc; 2010 Mar; 5(3):457-72. PubMed ID: 20203663 [TBL] [Abstract][Full Text] [Related]
6. Visualizing and characterizing in vivo DNA-binding events and direct target genes of plant transcription factors. Muiño JM; Angenent GC; Kaufmann K Methods Mol Biol; 2011; 754():293-305. PubMed ID: 21720960 [TBL] [Abstract][Full Text] [Related]
7. Global analysis of transcription factor-binding sites in yeast using ChIP-Seq. Lefrançois P; Gallagher JE; Snyder M Methods Mol Biol; 2014; 1205():231-55. PubMed ID: 25213249 [TBL] [Abstract][Full Text] [Related]
9. Identification of Candidate Functional Elements in the Genome from ChIP-seq Data. Marinov GK Methods Mol Biol; 2017; 1543():19-43. PubMed ID: 28349420 [TBL] [Abstract][Full Text] [Related]
10. ChIPseq in Yeast Species: From Chromatin Immunoprecipitation to High-Throughput Sequencing and Bioinformatics Data Analyses. Lelandais G; Blugeon C; Merhej J Methods Mol Biol; 2016; 1361():185-202. PubMed ID: 26483023 [TBL] [Abstract][Full Text] [Related]
11. ChIP-seq for the Identification of Functional Elements in the Human Genome. Marinov GK Methods Mol Biol; 2017; 1543():3-18. PubMed ID: 28349419 [TBL] [Abstract][Full Text] [Related]
12. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans. Brdlik CM; Niu W; Snyder M Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441 [TBL] [Abstract][Full Text] [Related]
13. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications. Pillai S; Chellappan SP Methods Mol Biol; 2015; 1288():447-72. PubMed ID: 25827896 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide mapping of DNase I hypersensitive sites in plants. Zhang W; Jiang J Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768 [TBL] [Abstract][Full Text] [Related]
15. Computational analysis of ChIP-seq data. Ji H Methods Mol Biol; 2010; 674():143-59. PubMed ID: 20827590 [TBL] [Abstract][Full Text] [Related]
16. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis. Cortijo S; Charoensawan V; Roudier F; Wigge PA Methods Mol Biol; 2018; 1761():231-248. PubMed ID: 29525962 [TBL] [Abstract][Full Text] [Related]
17. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants. Chen X; Bhadauria V; Ma B Curr Issues Mol Biol; 2018; 27():171-180. PubMed ID: 28885181 [TBL] [Abstract][Full Text] [Related]
18. Protein tagging for chromatin immunoprecipitation from Arabidopsis. de Folter S Methods Mol Biol; 2011; 678():199-210. PubMed ID: 20931382 [TBL] [Abstract][Full Text] [Related]
19. Optimizing detection of transcription factor-binding sites in ChIP-seq experiments. Kallio A; Elo LL Methods Mol Biol; 2013; 1038():181-91. PubMed ID: 23872976 [TBL] [Abstract][Full Text] [Related]
20. Analyzing transcription factor occupancy during embryo development using ChIP-seq. Ghavi-Helm Y; Furlong EE Methods Mol Biol; 2012; 786():229-45. PubMed ID: 21938630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]