These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 25757970)

  • 1. [The role of pulse oximetry plethysmographic waveform monitoring as a marker of restoration of spontaneous circulation:a pilot study].
    Li C; Xu J; Han F; Zheng L; Fu Y; Yao D; Zhang X; Zhu H; Guo S; Yu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2015 Mar; 27(3):203-8. PubMed ID: 25757970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High central venous pressure amplitude predicts successful defibrillation in a porcine model of cardiac arrest.
    Balzer C; Eagle SS; Yannopoulos D; Aufderheide TP; Riess ML
    Resuscitation; 2023 Apr; 185():109716. PubMed ID: 36736947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A remote-controlled automatic chest compression device capable of moving compression position during CPR: A pilot study in a mannequin and a swine model of cardiac arrest.
    Suh GJ; Kim T; Kim KS; Kwon WY; Kim H; Park H; Wang G; Park J; Hur S; Sim J; Kim K; Lee JC; Shin DA; Cho WS; Kim BJ; Kwon S; Lee YJ
    PLoS One; 2024; 19(1):e0297057. PubMed ID: 38241416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manual versus mechanical cardiopulmonary resuscitation. An experimental study in pigs.
    Liao Q; Sjöberg T; Paskevicius A; Wohlfart B; Steen S
    BMC Cardiovasc Disord; 2010 Oct; 10():53. PubMed ID: 21029406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Return of Spontaneous Circulation in a Pediatric Swine Model of Cardiac Arrest Using Low-Resolution Multimodal Physiological Waveforms.
    Silva LEV; Shi L; Gaudio HA; Padmanabhan V; Morgan RW; Slovis JM; Forti RM; Morton S; Lin Y; Laurent GH; Breimann J; Yun BH; Ranieri NR; Bowe M; Baker WB; Kilbaugh TJ; Ko TS; Tsui FR
    IEEE J Biomed Health Inform; 2023 Oct; 27(10):4719-4727. PubMed ID: 37478027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous chest compressions are associated with higher peak inspiratory pressures when compared to 30:2 in an experimental cardiac arrest model.
    Mälberg J; Marchesi S; Spangler D; Hadziosmanovic N; Smekal D; Rubertsson S
    Intensive Care Med Exp; 2023 Nov; 11(1):75. PubMed ID: 37938394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chest compressions for pediatric organized rhythms: A hemodynamic and outcomes analysis.
    Zinna SS; Morgan RW; Reeder RW; Ahmed T; Bell MJ; Bishop R; Bochkoris M; Burns C; Carcillo JA; Carpenter TC; Cooper KK; Michael Dean J; Wesley Diddle J; Federman M; Fernandez R; Fink EL; Franzon D; Frazier AH; Friess SH; Graham K; Hall M; Harding ML; Hehir DA; Horvat CM; Huard LL; Landis WP; Maa T; Manga A; McQuillen PS; Meert KL; Mourani PM; Nadkarni VM; Naim MY; Notterman D; Pollack MM; Sapru A; Schneiter C; Sharron MP; Srivastava N; Tilford B; Viteri S; Wessel D; Wolfe HA; Yates AR; Zuppa AF; Berg RA; Sutton RM
    Resuscitation; 2024 Jan; 194():110068. PubMed ID: 38052273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelin-1 attenuates the hemodynamic response to exogenous epinephrine in a porcine ischemic ventricular fibrillation cardiac arrest model.
    Shah AP; Youngquist ST; McClung CD; Thomas JL; Tzvetkova E; Hanif MA; Rosborough JP; Niemann JT
    J Interferon Cytokine Res; 2011 Sep; 31(9):679-84. PubMed ID: 21651344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung tissue injury and hemodynamic effects of ventilations synchronized or unsynchronized to continuous chest compressions in a porcine cardiac arrest model.
    Olasveengen TM; Skåre C; Skjerven-Martinsen M; Hoff-Olsen P; Kramer-Johansen J; Hoff Nordum F; Eriksen M; Anderas Norseng P; Wik L
    Resusc Plus; 2024 Mar; 17():100530. PubMed ID: 38155976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-tidal carbon dioxide after sodium bicarbonate infusion during mechanical ventilation or ongoing cardiopulmonary resuscitation.
    Roh YI; Kim HI; Kim SJ; Cha KC; Jung WJ; Park YJ; Hwang SO
    Am J Emerg Med; 2024 Feb; 76():211-216. PubMed ID: 38096770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel predictor of unsustained return of spontaneous circulation in cardiac arrest patients through a combination of capnography and pulse oximetry: a multicenter observational study.
    Yang J; Tang H; Shao S; Xu F; Fu Y; Xu S; Li C; Li Y; Liu Y; Walline JH; Zhu H; Chen Y; Yu X; Xu J
    World J Emerg Med; 2024; 15(1):16-22. PubMed ID: 38188554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method to evaluate carotid blood flow by continuous Doppler monitoring during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Zhao X; Wang S; Yuan W; Wu J; Li C
    Resuscitation; 2024 Feb; 195():110092. PubMed ID: 38104797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel gas mixture combined with an auto-transfusion tourniquet enhances cerebral O
    Gavriely N; Rasanen JO; Saar SA; Lamhaut L; Hutin A; Lidouren F; Abi Zeid Daou Y; Tissier R
    Resusc Plus; 2024 Sep; 19():100681. PubMed ID: 38966232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RESPIRATORY MECHANICS AND NEURAL RESPIRATORY DRIVE OF UNTREATED GASPING DURING CARDIAC ARREST IN A PORCINE MODEL.
    Lin L; Wang P; Zheng H; Zhong Z; Zhuansun Y; Yang Z; Chen R
    Shock; 2023 Jun; 59(6):948-954. PubMed ID: 37018832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Female sex is not associated with improved rates of ROSC or short term survival following prolonged porcine ventricular fibrillation.
    Reynolds JC; Rittenberger JC; Menegazzi JJ
    Resuscitation; 2012 Nov; 83(11):1386-90. PubMed ID: 22445866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vital sign monitoring during out-of-hospital pediatric advanced airway management.
    Hansen M; White L; Whitmore G; Lin A; Walker R
    J Am Coll Emerg Physicians Open; 2020 Dec; 1(6):1571-1577. PubMed ID: 33392565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral Intravenous Waveform Analysis Responsiveness to Subclinical Hemorrhage in a Rat Model.
    Barajas MB; Riess ML; Hampton MJW; Li Z; Shi Y; Shotwell MS; Staudt G; Baudenbacher FJ; Lefevre RJ; Eagle SS
    Anesth Analg; 2023 May; 136(5):941-948. PubMed ID: 37058731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave Separation Analysis to Assess Cardiovascular Alterations Induced by Sepsis.
    Guberti D; Ferrario M; Liu S; Jakob SM; Carrara M
    IEEE Trans Biomed Eng; 2024 Jun; 71(6):1719-1731. PubMed ID: 38163302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracardiac Induced Ventricular Fibrillation for the Euthanasia of Sheep.
    Barka ND; Smith JW; Shoyama FM; Howard BT
    J Am Assoc Lab Anim Sci; 2023 Sep; 62(5):464-469. PubMed ID: 37673664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse Oximetry Waveform Represents an Earlier Ventricular Contraction in Relation to the Intraarterial Blood Pressure Tracing and Electrocardiogram on Multichannel Monitors: A Case Series.
    Tripathi N; Tripathi M; Pandey M
    A A Pract; 2021 Aug; 15(8):e01505. PubMed ID: 34415242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.