BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25758059)

  • 1. The topology of the Ehrenfest force density revisited. A different perspective based on Slater-type orbitals.
    Dillen J
    J Comput Chem; 2015 May; 36(12):883-90. PubMed ID: 25758059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.
    Martín Pendás A; Hernández-Trujillo J
    J Chem Phys; 2012 Oct; 137(13):134101. PubMed ID: 23039579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ehrenfest force field: A perspective based on electron density functions.
    Mortera-Carbonell AJ; Francisco E; Martín Pendás Á; Hernández-Trujillo J
    J Chem Phys; 2023 Dec; 159(23):. PubMed ID: 38108480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a density functional theory-based method for the calculation of the hyperfine A-tensor in periodic systems with the use of numerical and Slater type atomic orbitals: application to paramagnetic defects.
    Kadantsev ES; Ziegler T
    J Phys Chem A; 2008 May; 112(19):4521-6. PubMed ID: 18412322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.
    Ferreira LM; Eaby A; Dillen J
    J Comput Chem; 2017 Dec; 38(32):2784-2790. PubMed ID: 28963855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets.
    Watson MA; Handy NC; Cohen AJ; Helgaker T
    J Chem Phys; 2004 Apr; 120(16):7252-61. PubMed ID: 15267634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Atoms in Molecules:  Caged Atoms and the Ehrenfest Force.
    Bader RF; Fang DC
    J Chem Theory Comput; 2005 May; 1(3):403-14. PubMed ID: 26641507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of energetic criteria to probe the stabilizing interaction resulting from a bond path between congested atoms.
    Myburgh D; von Berg S; Dillen J
    J Comput Chem; 2018 Oct; 39(27):2273-2282. PubMed ID: 30144110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ehrenfest force topology: a physically intuitive approach for analyzing chemical interactions.
    Maza JR; Jenkins S; Kirk SR; Anderson JS; Ayers PW
    Phys Chem Chem Phys; 2013 Nov; 15(41):17823-36. PubMed ID: 24045853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the basis-set dependence of local and integrated electron density properties: Application of a new computer program for quantum-chemical density analysis.
    Volkov A; Koritsanszky T; Chodkiewicz M; King HF
    J Comput Chem; 2009 Jul; 30(9):1379-91. PubMed ID: 19031414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of molecular integrals over Slater-type orbitals using recurrence relations for overlap integrals and basic one-center Coulomb integrals.
    Guseinov I; Mamedov B; Rzaeva A
    J Mol Model; 2002 Apr; 8(4):145-9. PubMed ID: 12111393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.
    Keith TA; Frisch MJ
    J Phys Chem A; 2011 Nov; 115(45):12879-94. PubMed ID: 21780749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a DFT-based method for the calculation of the Zeeman g-tensor in periodic systems with the use of numerical and Slater-type atomic orbitals.
    Kadantsev ES; Ziegler T
    J Phys Chem A; 2009 Feb; 113(7):1327-34. PubMed ID: 19173640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular structural formulas as one-electron density and hamiltonian operators: the VIF method extended.
    Alia JD
    J Phys Chem A; 2007 Mar; 111(12):2307-18. PubMed ID: 17388324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of critical points in the electron density as descriptors by building quantitative structure-property relationships for the atomic polar tensor.
    Buttingsrud B; Alsberg BK; Astrand PO
    J Comput Chem; 2007 Oct; 28(13):2130-9. PubMed ID: 17464968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Definition of molecular structure: by choice or by appeal to observation?
    Bader RF
    J Phys Chem A; 2010 Jul; 114(28):7431-44. PubMed ID: 20550157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At).
    Giju KT; De Proft F; Geerlings P
    J Phys Chem A; 2005 Mar; 109(12):2925-36. PubMed ID: 16833611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in electric field and atomic surface derived properties from experimental electron densities.
    Bouhmaida N; Ghermani NE
    Phys Chem Chem Phys; 2008 Jul; 10(26):3934-41. PubMed ID: 18688393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of the acetonitrile and acetonitrile dimer anions: a topological investigation.
    Timerghazin QK; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):520-8. PubMed ID: 18154288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.