BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25758242)

  • 1. Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools.
    Balasubramanian S; Matasci M; Kadlecova Z; Baldi L; Hacker DL; Wurm FM
    J Biotechnol; 2015 Apr; 200():61-9. PubMed ID: 25758242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability.
    Matasci M; Baldi L; Hacker DL; Wurm FM
    Biotechnol Bioeng; 2011 Sep; 108(9):2141-50. PubMed ID: 21495018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines.
    Balasubramanian S; Rajendra Y; Baldi L; Hacker DL; Wurm FM
    Biotechnol Bioeng; 2016 Jun; 113(6):1234-43. PubMed ID: 26616356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multigene expression in stable CHO cell pools generated with the piggyBac transposon system.
    Balasubramanian S; Wurm FM; Hacker DL
    Biotechnol Prog; 2016 Sep; 32(5):1308-1317. PubMed ID: 27302570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools.
    Rajendra Y; Balasubramanian S; Peery RB; Swartling JR; McCracken NA; Norris DL; Frye CC; Barnard GC
    Biotechnol Prog; 2017 Mar; 33(2):534-540. PubMed ID: 28188692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant CHO Cell Pool Generation Using piggyBac Transposon System.
    Balasubramanian S
    Methods Mol Biol; 2018; 1850():69-78. PubMed ID: 30242681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant CHO Cell Pool Generation Using PiggyBac Transposon System.
    Balasubramanian S
    Methods Mol Biol; 2024; 2810():137-146. PubMed ID: 38926277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.
    Poulain A; Perret S; Malenfant F; Mullick A; Massie B; Durocher Y
    J Biotechnol; 2017 Aug; 255():16-27. PubMed ID: 28625678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of stable Chinese hamster ovary pools yielding antibody titers of up to 7.6 g/L using the piggyBac transposon system.
    Rajendra Y; Peery RB; Barnard GC
    Biotechnol Prog; 2016 Sep; 32(5):1301-1307. PubMed ID: 27254818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional and post-transcriptional limitations of high-yielding, PEI-mediated transient transfection with CHO and HEK-293E cells.
    Rajendra Y; Kiseljak D; Baldi L; Wurm FM; Hacker DL
    Biotechnol Prog; 2015; 31(2):541-9. PubMed ID: 25683738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells.
    Poulain A; Mullick A; Massie B; Durocher Y
    J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies.
    Rajendra Y; Balasubramanian S; McCracken NA; Norris DL; Lian Z; Schmitt MG; Frye CC; Barnard GC
    Biotechnol Prog; 2017 Nov; 33(6):1436-1448. PubMed ID: 28547769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.
    Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC
    Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple high-yielding process for transient gene expression in CHO cells.
    Rajendra Y; Kiseljak D; Baldi L; Hacker DL; Wurm FM
    J Biotechnol; 2011 Apr; 153(1-2):22-6. PubMed ID: 21392548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of CHO host cell subclones with increased specific antibody production rates by repeated cycles of transient transfection and cell sorting.
    Pichler J; Galosy S; Mott J; Borth N
    Biotechnol Bioeng; 2011 Feb; 108(2):386-94. PubMed ID: 20842656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.
    Lattenmayer C; Loeschel M; Schriebl K; Steinfellner W; Sterovsky T; Trummer E; Vorauer-Uhl K; Müller D; Katinger H; Kunert R
    Biotechnol Bioeng; 2007 Apr; 96(6):1118-26. PubMed ID: 17004273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium phosphate transfection generates mammalian recombinant cell lines with higher specific productivity than polyfection.
    Chenuet S; Martinet D; Besuchet-Schmutz N; Wicht M; Jaccard N; Bon AC; Derouazi M; Hacker DL; Beckmann JS; Wurm FM
    Biotechnol Bioeng; 2008 Dec; 101(5):937-45. PubMed ID: 18781700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines.
    Ho SC; Bardor M; Feng H; Mariati ; Tong YW; Song Z; Yap MG; Yang Y
    J Biotechnol; 2012 Jan; 157(1):130-9. PubMed ID: 22024589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer?
    Chusainow J; Yang YS; Yeo JH; Toh PC; Asvadi P; Wong NS; Yap MG
    Biotechnol Bioeng; 2009 Mar; 102(4):1182-96. PubMed ID: 18979540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology.
    Kennard ML; Goosney DL; Monteith D; Roe S; Fischer D; Mott J
    Biotechnol Bioeng; 2009 Oct; 104(3):526-39. PubMed ID: 19544304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.