These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 25758332)

  • 1. Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides.
    Weng A; Manunta MD; Thakur M; Gilabert-Oriol R; Tagalakis AD; Eddaoudi A; Munye MM; Vink CA; Wiesner B; Eichhorst J; Melzig MF; Hart SL
    J Control Release; 2015 May; 206():75-90. PubMed ID: 25758332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadening the Scope of Sapofection: Cationic Peptide-Saponin Conjugates Improve Gene Delivery
    Kolster M; Sonntag A; Weise C; Correa J; Fuchs H; Walther W; Fernandez-Megia E; Weng A
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36095-36105. PubMed ID: 38970470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilized integrin-targeting ternary LPD (lipopolyplex) vectors for gene delivery designed to disassemble within the target cell.
    Mustapa MF; Grosse SM; Kudsiova L; Elbs M; Raiber EA; Wong JB; Brain AP; Armer HE; Warley A; Keppler M; Ng T; Lawrence MJ; Hart SL; Hailes HC; Tabor AB
    Bioconjug Chem; 2009 Mar; 20(3):518-32. PubMed ID: 19228071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy.
    Duguid JG; Li C; Shi M; Logan MJ; Alila H; Rolland A; Tomlinson E; Sparrow JT; Smith LC
    Biophys J; 1998 Jun; 74(6):2802-14. PubMed ID: 9635734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipopolyplex ternary delivery systems incorporating C14 glycerol-based lipids.
    Kudsiova L; Fridrich B; Ho J; Mustapa MF; Campbell F; Welser K; Keppler M; Ng T; Barlow DJ; Tabor AB; Hailes HC; Lawrence MJ
    Mol Pharm; 2011 Oct; 8(5):1831-47. PubMed ID: 21815622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-based targeted polymeric nanoparticles for siRNA delivery.
    Hussein WM; Cheong YS; Liu C; Liu G; Begum AA; Attallah MA; Moyle PM; Torchilin VP; Smith R; Toth I
    Nanotechnology; 2019 Oct; 30(41):415604. PubMed ID: 31295734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Ionizable Lipids To Overcome the Limiting Step of Endosomal Escape: Application in the Intracellular Delivery of mRNA, DNA, and siRNA.
    Habrant D; Peuziat P; Colombani T; Dallet L; Gehin J; Goudeau E; Evrard B; Lambert O; Haudebourg T; Pitard B
    J Med Chem; 2016 Apr; 59(7):3046-62. PubMed ID: 26943260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrophobic tails of plier-like cationic lipids on nucleic acid delivery and intracellular trafficking.
    Pengnam S; Plainwong S; Patrojanasophon P; Rojanarata T; Ngawhirunpat T; Radchatawedchakoon W; Niyomtham N; Yingyongnarongkul BE; Opanasopit P
    Int J Pharm; 2020 Jan; 573():118798. PubMed ID: 31759106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells.
    Wan Y; Dai W; Nevagi RJ; Toth I; Moyle PM
    Acta Biomater; 2017 Sep; 59():257-268. PubMed ID: 28655658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal escape pathways for delivery of biologicals.
    Varkouhi AK; Scholte M; Storm G; Haisma HJ
    J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape.
    El-Sayed A; Masuda T; Khalil I; Akita H; Harashima H
    J Control Release; 2009 Sep; 138(2):160-7. PubMed ID: 19465073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: interplay between nanostructure and composition.
    Pozzi D; Marchini C; Cardarelli F; Salomone F; Coppola S; Montani M; Zabaleta ME; Digman MA; Gratton E; Colapicchioni V; Caracciolo G
    Biochim Biophys Acta; 2014 Mar; 1838(3):957-67. PubMed ID: 24296066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the pre- and post-nuclear intracellular processing of 1,4-dihydropyridine based gene delivery carriers.
    Hyvönen Z; Hämäläinen V; Ruponen M; Lucas B; Rejman J; Vercauteren D; Demeester J; De Smedt S; Braeckmans K
    J Control Release; 2012 Aug; 162(1):167-75. PubMed ID: 22709591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymers for nucleic acid transfer-an overview.
    Wagner E
    Adv Genet; 2014; 88():231-61. PubMed ID: 25409608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene delivery by cationic lipids: in and out of an endosome.
    Hoekstra D; Rejman J; Wasungu L; Shi F; Zuhorn I
    Biochem Soc Trans; 2007 Feb; 35(Pt 1):68-71. PubMed ID: 17233603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency.
    Zuhorn IS; Bakowsky U; Polushkin E; Visser WH; Stuart MC; Engberts JB; Hoekstra D
    Mol Ther; 2005 May; 11(5):801-10. PubMed ID: 15851018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of lipid:peptide:DNA (LPD) nanoparticles and their use for gene transfection.
    Zhang F; Li HY
    Methods Mol Biol; 2012; 906():329-36. PubMed ID: 22791446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid.
    Kim HK; Davaa E; Myung CS; Park JS
    Int J Pharm; 2010 Jun; 392(1-2):141-7. PubMed ID: 20347025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes.
    Ukawa M; Akita H; Masuda T; Hayashi Y; Konno T; Ishihara K; Harashima H
    Biomaterials; 2010 Aug; 31(24):6355-62. PubMed ID: 20537380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.