BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 25758464)

  • 41. Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system.
    von Hilchen CM; Bustos AE; Giangrande A; Technau GM; Altenhein B
    Development; 2013 Sep; 140(17):3657-68. PubMed ID: 23903191
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accumulation of Laminin Monomers in Drosophila Glia Leads to Glial Endoplasmic Reticulum Stress and Disrupted Larval Locomotion.
    Petley-Ragan LM; Ardiel EL; Rankin CH; Auld VJ
    J Neurosci; 2016 Jan; 36(4):1151-64. PubMed ID: 26818504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the
    Contreras EG; Glavic Á; Brand AH; Sierralta JA
    J Neurosci; 2021 Jul; 41(30):6430-6448. PubMed ID: 34210781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peripheral glia direct axon guidance across the CNS/PNS transition zone.
    Sepp KJ; Schulte J; Auld VJ
    Dev Biol; 2001 Oct; 238(1):47-63. PubMed ID: 11783993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A versatile genetic tool to study midline glia function in the Drosophila CNS.
    Banerjee S; Mino RE; Fisher ES; Bhat MA
    Dev Biol; 2017 Sep; 429(1):35-43. PubMed ID: 28602954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neurexin IV, caspr and paranodin--novel members of the neurexin family: encounters of axons and glia.
    Bellen HJ; Lu Y; Beckstead R; Bhat MA
    Trends Neurosci; 1998 Oct; 21(10):444-9. PubMed ID: 9786343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular mechanism of central nervous system repair by the Drosophila NG2 homologue kon-tiki.
    Losada-Perez M; Harrison N; Hidalgo A
    J Cell Biol; 2016 Aug; 214(5):587-601. PubMed ID: 27551055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Axonal regulation of myelination by neuregulin 1.
    Nave KA; Salzer JL
    Curr Opin Neurobiol; 2006 Oct; 16(5):492-500. PubMed ID: 16962312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.
    Hijazi A; Haenlin M; Waltzer L; Roch F
    PLoS One; 2011 Mar; 6(3):e17763. PubMed ID: 21423573
    [TBL] [Abstract][Full Text] [Related]  

  • 50. eyeless/Pax6 controls the production of glial cells in the visual center of Drosophila melanogaster.
    Suzuki T; Takayama R; Sato M
    Dev Biol; 2016 Jan; 409(2):343-53. PubMed ID: 26670857
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early lineage segregation of the retinal basal glia in the Drosophila eye disc.
    Tsao CK; Huang YF; Sun YH
    Sci Rep; 2020 Oct; 10(1):18522. PubMed ID: 33116242
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling.
    Hagedorn L; Paratore C; Brugnoli G; Baert JL; Mercader N; Suter U; Sommer L
    Dev Biol; 2000 Mar; 219(1):44-58. PubMed ID: 10677254
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Organization and function of the blood-brain barrier in Drosophila.
    Stork T; Engelen D; Krudewig A; Silies M; Bainton RJ; Klämbt C
    J Neurosci; 2008 Jan; 28(3):587-97. PubMed ID: 18199760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.
    Spindler SR; Ortiz I; Fung S; Takashima S; Hartenstein V
    Dev Biol; 2009 Oct; 334(2):355-68. PubMed ID: 19646433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mammalian Nkx2.2+ perineurial glia are essential for motor nerve development.
    Clark JK; O'keefe A; Mastracci TL; Sussel L; Matise MP; Kucenas S
    Dev Dyn; 2014 Sep; 243(9):1116-29. PubMed ID: 24979729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The glial regenerative response to central nervous system injury is enabled by pros-notch and pros-NFκB feedback.
    Kato K; Forero MG; Fenton JC; Hidalgo A
    PLoS Biol; 2011 Aug; 9(8):e1001133. PubMed ID: 21912512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Loss of focal adhesions in glia disrupts both glial and photoreceptor axon migration in the Drosophila visual system.
    Xie X; Gilbert M; Petley-Ragan L; Auld VJ
    Development; 2014 Aug; 141(15):3072-83. PubMed ID: 25053436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organization and postembryonic development of glial cells in the adult central brain of Drosophila.
    Awasaki T; Lai SL; Ito K; Lee T
    J Neurosci; 2008 Dec; 28(51):13742-53. PubMed ID: 19091965
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The exit of axons and glial membrane from the developing Drosophila retina requires integrins.
    Ren Q; Rao Y
    Mol Brain; 2022 Jan; 15(1):2. PubMed ID: 34980203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuron-glia interaction in the Drosophila nervous system.
    Bittern J; Pogodalla N; Ohm H; Brüser L; Kottmeier R; Schirmeier S; Klämbt C
    Dev Neurobiol; 2021 Jul; 81(5):438-452. PubMed ID: 32096904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.