These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 2575916)
1. Substitution of amino acids in helix F of bacteriorhodopsin: effects on the photochemical cycle. Ahl PL; Stern LJ; Mogi T; Khorana HG; Rothschild KJ Biochemistry; 1989 Dec; 28(26):10028-34. PubMed ID: 2575916 [TBL] [Abstract][Full Text] [Related]
2. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. Ahl PL; Stern LJ; Düring D; Mogi T; Khorana HG; Rothschild KJ J Biol Chem; 1988 Sep; 263(27):13594-601. PubMed ID: 3047127 [TBL] [Abstract][Full Text] [Related]
3. Substitution of membrane-embedded aspartic acids in bacteriorhodopsin causes specific changes in different steps of the photochemical cycle. Stern LJ; Ahl PL; Marti T; Mogi T; Duñach M; Berkowitz S; Rothschild KJ; Khorana HG Biochemistry; 1989 Dec; 28(26):10035-42. PubMed ID: 2575917 [TBL] [Abstract][Full Text] [Related]
4. Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. Hackett NR; Stern LJ; Chao BH; Kronis KA; Khorana HG J Biol Chem; 1987 Jul; 262(19):9277-84. PubMed ID: 3597412 [TBL] [Abstract][Full Text] [Related]
5. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine. Duñach M; Berkowitz S; Marti T; He YW; Subramaniam S; Khorana HG; Rothschild KJ J Biol Chem; 1990 Oct; 265(28):16978-84. PubMed ID: 2211603 [TBL] [Abstract][Full Text] [Related]
6. Vibrational spectroscopy of bacteriorhodopsin mutants: evidence for the interaction of proline-186 with the retinylidene chromophore. Rothschild KJ; He YW; Mogi T; Marti T; Stern LJ; Khorana HG Biochemistry; 1990 Jun; 29(25):5954-60. PubMed ID: 2166567 [TBL] [Abstract][Full Text] [Related]
7. Replacement of leucine-93 by alanine or threonine slows down the decay of the N and O intermediates in the photocycle of bacteriorhodopsin: implications for proton uptake and 13-cis-retinal----all-trans-retinal reisomerization. Subramaniam S; Greenhalgh DA; Rath P; Rothschild KJ; Khorana HG Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6873-7. PubMed ID: 1650486 [TBL] [Abstract][Full Text] [Related]
8. Conserved amino acids in F-helix of bacteriorhodopsin form part of a retinal binding pocket. Rothschild KJ; Braiman MS; Mogi T; Stern LJ; Khorana HG FEBS Lett; 1989 Jul; 250(2):448-52. PubMed ID: 2753143 [TBL] [Abstract][Full Text] [Related]
9. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin. Mogi T; Marti T; Khorana HG J Biol Chem; 1989 Aug; 264(24):14197-201. PubMed ID: 2547787 [TBL] [Abstract][Full Text] [Related]
10. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966 [TBL] [Abstract][Full Text] [Related]
11. Time-resolved fourier transform infrared study of structural changes in the last steps of the photocycles of Glu-204 and Leu-93 mutants of bacteriorhodopsin. Kandori H; Yamazaki Y; Hatanaka M; Needleman R; Brown LS; Richter HT; Lanyi JK; Maeda A Biochemistry; 1997 Apr; 36(17):5134-41. PubMed ID: 9136874 [TBL] [Abstract][Full Text] [Related]
12. Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. Marti T; Otto H; Mogi T; Rösselet SJ; Heyn MP; Khorana HG J Biol Chem; 1991 Apr; 266(11):6919-27. PubMed ID: 1849896 [TBL] [Abstract][Full Text] [Related]
14. Reducing the flexibility of retinal restores a wild-type-like photocycle in bacteriorhodopsin mutants defective in protein-retinal coupling. Delaney JK; Yahalom G; Sheves M; Subramaniam S Proc Natl Acad Sci U S A; 1997 May; 94(10):5028-33. PubMed ID: 9144184 [TBL] [Abstract][Full Text] [Related]
15. The residues Leu 93 and Asp 96 act independently in the bacteriorhodopsin photocycle: studies with the leu 93-->Ala, Asp 96-->Asn double mutant. Delaney JK; Subramaniam S Biophys J; 1996 May; 70(5):2366-72. PubMed ID: 9172761 [TBL] [Abstract][Full Text] [Related]
16. Specific effects of chloride on the photocycle of E194Q and E204Q mutants of bacteriorhodopsin as measured by FTIR spectroscopy. Lazarova T; Sanz C; Sepulcre F; Querol E; Padrós E Biochemistry; 2002 Jun; 41(25):8176-83. PubMed ID: 12069610 [TBL] [Abstract][Full Text] [Related]
17. Effects of substitution of tyrosine 57 with asparagine and phenylalanine on the properties of bacteriorhodopsin. Govindjec R; Kono M; Balashov SP; Imasheva E; Sheves M; Ebrey TG Biochemistry; 1995 Apr; 34(14):4828-38. PubMed ID: 7718589 [TBL] [Abstract][Full Text] [Related]
19. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modeling of the M----bR reactions. Groma GI; Helgerson SL; Wolber PK; Beece D; Dancsházy Z; Keszthelyi L; Stoeckenius W Biophys J; 1984 May; 45(5):985-92. PubMed ID: 6329348 [TBL] [Abstract][Full Text] [Related]
20. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. He Y; Krebs MP; Fischer WB; Khorana HG; Rothschild KJ Biochemistry; 1993 Mar; 32(9):2282-90. PubMed ID: 8443171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]