BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25759162)

  • 1. Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277.
    Maass D; Todescato D; Moritz DE; Oliveira JV; Oliveira D; Ulson de Souza AA; Guelli Souza SM
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1447-53. PubMed ID: 25759162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277.
    Maass D; de Oliveira D; de Souza AA; Souza SM
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2079-85. PubMed ID: 25163887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Production of a Rhodococcus erythropolis ATCC 4277 Biocatalyst for Biodesulfurization and Biodenitrogenation Applications.
    Todescato D; Maass D; Mayer DA; Vladimir Oliveira J; de Oliveira D; Ulson de Souza SMAG; Ulson de Souza AA
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1375-1389. PubMed ID: 28528382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain.
    Yu B; Xu P; Shi Q; Ma C
    Appl Environ Microbiol; 2006 Jan; 72(1):54-8. PubMed ID: 16391024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277.
    Maass D; Mayer DA; Moritz DE; Oliveira D; de Souza AA; Souza SM
    Appl Biochem Biotechnol; 2015 Oct; 177(3):759-70. PubMed ID: 26201481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions.
    Maslova O; Senko O; Stepanov N; Gladchenko M; Gaydamaka S; Akopyan A; Polikarpova P; Lysenko S; Anisimov A; Efremenko E
    Bioresour Technol; 2021 Jan; 319():124248. PubMed ID: 33254470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electrokinetics on biodesulfurization of the model oil by Rhodococcus erythropolis PTCC1767 and Bacillus subtilis DSMZ 3256.
    Boshagh F; Mokhtarani B; Mortaheb HR
    J Hazard Mater; 2014 Sep; 280():781-7. PubMed ID: 25244073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP.
    Yu B; Ma C; Zhou W; Wang Y; Cai X; Tao F; Zhang Q; Tong M; Qu J; Xu P
    FEMS Microbiol Lett; 2006 May; 258(2):284-9. PubMed ID: 16640586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp.
    Ma CQ; Feng JH; Zeng YY; Cai XF; Sun BP; Zhang ZB; Blankespoor HD; Xu P
    Chemosphere; 2006 Sep; 65(1):165-9. PubMed ID: 16624377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp.
    Li GQ; Li SS; Qu SW; Liu QK; Ma T; Zhu L; Liang FL; Liu RL
    Biotechnol Lett; 2008 Oct; 30(10):1759-64. PubMed ID: 18516503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Biodesulfurization of sour heavy crude oil.
    Al-Khazaali WMK; Ataei SA
    PLoS One; 2023; 18(4):e0283285. PubMed ID: 37014849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the emulsion characteristics of Rhodococcus erythropolis and Escherichia coli SOXC-5 cells expressing biodesulfurization genes.
    Borole AP; Kaufman EN; Grossman MJ; Minak-Bernero V; Bare R; Lee MK
    Biotechnol Prog; 2002; 18(1):88-93. PubMed ID: 11822905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The innate ability of Rhodococcus sp. SDUZAWQ to tolerate sulfur in petroleum].
    Tong MY; Cai XF; Zeng YY; Liu RL; Xu P
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):576-9. PubMed ID: 16245874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate preferences in biodesulfurization of diesel range fuels by Rhodococcus sp. strain ECRD-1.
    Prince RC; Grossman MJ
    Appl Environ Microbiol; 2003 Oct; 69(10):5833-8. PubMed ID: 14532032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies.
    Aggarwal S; Karimi IA; Lee DY
    Mol Biosyst; 2011 Nov; 7(11):3122-31. PubMed ID: 21912787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-hydrogen processes for simultaneous desulfurization and denitrogenation of light petroleum fuels-an elaborative review.
    Kumari S; Sengupta S
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):61873-61907. PubMed ID: 34553278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial desulfurization of organic sulfur compounds in petroleum.
    Ohshiro T; Izumi Y
    Biosci Biotechnol Biochem; 1999 Jan; 63(1):1-9. PubMed ID: 10052116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants].
    Karpenko EV; Vil'danova-Martsishin RI; Shcheglova NS; Pirog TP; Voloshina IN
    Prikl Biokhim Mikrobiol; 2006; 42(2):175-9. PubMed ID: 16761570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The surfactant tween 80 enhances biodesulfurization.
    Feng J; Zeng Y; Ma C; Cai X; Zhang Q; Tong M; Yu B; Xu P
    Appl Environ Microbiol; 2006 Nov; 72(11):7390-3. PubMed ID: 16980422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture.
    Konishi M; Kishimoto M; Omasa T; Katakura Y; Shioya S; Ohtake H
    J Biosci Bioeng; 2005 Mar; 99(3):259-63. PubMed ID: 16233786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.