These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2575944)

  • 1. Ionic basis of salt-induced receptor potential in frog taste cells.
    Miyamoto T; Okada Y; Sato T
    Comp Biochem Physiol A Comp Physiol; 1989; 94(4):591-5. PubMed ID: 2575944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-induced electrical epithelial responses of the frog (Rana catesbeiana) tongue and their relation to gustatory nerve activity in vivo.
    Soeda H; Sakudo F; Chen JK
    Arch Oral Biol; 1992 Mar; 37(3):241-3. PubMed ID: 1316745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic basis of receptor potential in frog taste cell in response to salt stimuli.
    Sato T; Sugimoto K; Okada Y
    Jpn J Physiol; 1982; 32(3):459-62. PubMed ID: 6982363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic basis of resting membrane potential in frog taste cells.
    Sato T; Sugimoto K; Okada Y; Miyamoto T
    Jpn J Physiol; 1984; 34(6):973-83. PubMed ID: 6336048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ionic basis of the receptor potential of frog taste cells induced by sugar stimuli.
    Okada Y; Miyamoto T; Sato T
    J Exp Biol; 1992 Jan; 162():23-36. PubMed ID: 1372639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic basis of receptor potential of frog taste cells induced by acid stimuli.
    Miyamoto T; Okada Y; Sato T
    J Physiol; 1988 Nov; 405():699-711. PubMed ID: 3267156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic mechanism of generation of receptor potential in response to quinine in frog taste cell.
    Okada Y; Miyamoto T; Sato T
    Brain Res; 1988 May; 450(1-2):295-302. PubMed ID: 3261192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of the receptor and basolateral membranes to the resting potential of a frog taste cell.
    Okada Y; Miyamoto T; Sato T
    Jpn J Physiol; 1986; 36(1):139-50. PubMed ID: 2425107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of mono- and divalent salt transduction mechanisms in frog gustation evidenced by cobalt chloride treatment.
    Herness MS
    J Neurophysiol; 1991 Aug; 66(2):580-9. PubMed ID: 1774587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt taste responses in the frog glossopharyngeal nerve: different receptor sites for Mg2+ and Na+.
    Kitada Y
    Brain Res; 1986 Aug; 380(1):172-5. PubMed ID: 3489501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arterial perfusion of frog tongue for intracellular recording of taste cell receptor potential.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):247-50. PubMed ID: 2864165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinine-HCl-induced modification of receptor potentials for taste stimuli in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1995 Feb; 12(1):45-52. PubMed ID: 7795491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-selective cation channel in bullfrog taste cell membrane.
    Fujiyama R; Miyamoto T; Sato T
    Neuroreport; 1993 Oct; 5(1):11-3. PubMed ID: 7506587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-specific inhibition by amiloride of canine chorda tympani nerve responses to various salts: do Na(+)-specific channels exist in canine taste receptor membranes?
    Nakamura M; Kurihara K
    Brain Res; 1990 Jul; 524(1):42-8. PubMed ID: 2169327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage clamping of a frog (Rana catesbeiana) taste cell with a single microelectrode.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Sep; 106(1):37-41. PubMed ID: 8104758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of voltage perturbation of the lingual receptive field on chorda tympani responses to Na+ and K+ salts in the rat: implications for gustatory transduction.
    Ye Q; Heck GL; DeSimone JA
    J Gen Physiol; 1994 Nov; 104(5):885-907. PubMed ID: 7876827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane resistance change of the frog taste cells in response to water and Nacl.
    Sato T; Beidler LM
    J Gen Physiol; 1975 Dec; 66(6):735-63. PubMed ID: 1104762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride.
    Avenet P; Lindemann B
    J Membr Biol; 1991 Oct; 124(1):33-41. PubMed ID: 1766010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical responses to frog taste cells to chemical stimuli.
    Akaike N; Noma A; Sato M
    J Physiol; 1976 Jan; 254(1):87-107. PubMed ID: 1082505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anion in salt taste: a possible role for paracellular pathways.
    Elliott EJ; Simon SA
    Brain Res; 1990 Dec; 535(1):9-17. PubMed ID: 1963343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.