BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25759749)

  • 1. Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis.
    Smith JP; Huang C; Kirby BJ
    Biomicrofluidics; 2015 Jan; 9(1):014116. PubMed ID: 25759749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis.
    Huang C; Smith JP; Saha TN; Rhim AD; Kirby BJ
    Biomicrofluidics; 2014 Jul; 8(4):044107. PubMed ID: 25379092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
    Huang C; Santana SM; Liu H; Bander NH; Hawkins BG; Kirby BJ
    Electrophoresis; 2013 Nov; 34(20-21):2970-9. PubMed ID: 23925921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system.
    Huang C; Liu H; Bander NH; Kirby BJ
    Biomed Microdevices; 2013 Dec; 15(6):941-8. PubMed ID: 23807279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture.
    Smith JP; Lannin TB; Syed Y; Santana SM; Kirby BJ
    Biomed Microdevices; 2014 Feb; 16(1):143-51. PubMed ID: 24078270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis.
    Chen H; Osman SY; Moose DL; Vanneste M; Anderson JL; Henry MD; Anand RK
    Lab Chip; 2023 May; 23(11):2586-2600. PubMed ID: 37185977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes.
    Yang L; Banada PP; Chatni MR; Seop Lim K; Bhunia AK; Ladisch M; Bashir R
    Lab Chip; 2006 Jul; 6(7):896-905. PubMed ID: 16804594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dielectrophoresis-based platform of cancerous cell capture using aptamer-functionalized gold nanoparticles in a microfluidic channel.
    Vu-Dinh H; Quang LD; Lin YR; Jen CP
    Electrophoresis; 2023 Jun; 44(11-12):1002-1015. PubMed ID: 36896498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental analysis of negative dielectrophoresis-induced particle trajectories.
    Luna R; Heineck DP; Bucher E; Heiser L; Ibsen SD
    Electrophoresis; 2022 Jun; 43(12):1366-1377. PubMed ID: 35377504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the efficiency of lung cancer cell capture using microfluidic dielectrophoresis and aptamer-based surface modification.
    Lin SH; Su TC; Huang SJ; Jen CP
    Electrophoresis; 2024 Jan; ():. PubMed ID: 38175846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and collision dynamics in periodic asymmetric obstacle arrays: rational design of microfluidic rare-cell immunocapture devices.
    Gleghorn JP; Smith JP; Kirby BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032136. PubMed ID: 24125242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative dielectrophoretic capture of bacterial spores in food matrices.
    Koklu M; Park S; Pillai SD; Beskok A
    Biomicrofluidics; 2010 Aug; 4(3):. PubMed ID: 20838479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.
    Kinio S; Mills JK
    Biomed Microdevices; 2016 Aug; 18(4):69. PubMed ID: 27432322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Study of Enhancement of Positive Dielectrophoresis Particle Trapping in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Kawashima D; Takei M
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2936-2944. PubMed ID: 30762523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chip for dielectrophoretic microbial capture, separation and detection II: experimental study.
    Weber MU; Petkowski JJ; Weber RE; Krajnik B; Stemplewski S; Panek M; Dziubak T; Mrozinska P; Piela A; Paluch E
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36640445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative dielectrophoretic capture and repulsion of single cells at a bipolar electrode: the impact of faradaic ion enrichment and depletion.
    Anand RK; Johnson ES; Chiu DT
    J Am Chem Soc; 2015 Jan; 137(2):776-83. PubMed ID: 25562315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.