These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25759751)

  • 41. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying.
    Tan A; Rodgers K; Murrihy J; O'Mathuna C; Glennon JD
    Lab Chip; 2001 Sep; 1(1):7-9. PubMed ID: 15100882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toward a disposable low-cost LOC device: heterogeneous polymer micro valve and pump fabricated by UV/ozone-assisted thermal fusion bonding.
    Jung W; Uddin MJ; Namkoong K; Chung W; Kim JH; Shim JS
    RSC Adv; 2020 Jul; 10(47):28390-28396. PubMed ID: 35519138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical power free, low dead volume, pressure-driven pumping for microfluidic applications.
    Moscovici M; Chien WY; Abdelgawad M; Sun Y
    Biomicrofluidics; 2010 Oct; 4(4):46501. PubMed ID: 21057609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A continuous roll-pulling approach for the fabrication of magnetic artificial cilia with microfluidic pumping capability.
    Wang Y; den Toonder J; Cardinaels R; Anderson P
    Lab Chip; 2016 Jun; 16(12):2277-86. PubMed ID: 27210071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A soft-polymer piezoelectric bimorph cantilever-actuated peristaltic micropump.
    Graf NJ; Bowser MT
    Lab Chip; 2008 Oct; 8(10):1664-70. PubMed ID: 18813388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of valve spacing on peristaltic pumping.
    Wolf KT; Poorghani A; Dixon JB; Alexeev A
    Bioinspir Biomim; 2023 Mar; 18(3):. PubMed ID: 36821859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polyimide-based microfluidic devices.
    Metz S; Holzer R; Renaud P
    Lab Chip; 2001 Sep; 1(1):29-34. PubMed ID: 15100886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.
    Skafte-Pedersen P; Sabourin D; Dufva M; Snakenborg D
    Lab Chip; 2009 Oct; 9(20):3003-6. PubMed ID: 19789757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrowetting (EW)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow.
    Cheng JY; Hsiung LC
    Biomed Microdevices; 2004 Dec; 6(4):341-7. PubMed ID: 15548880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automatic sequential fluid handling with multilayer microfluidic sample isolated pumping.
    Liu J; Fu H; Yang T; Li S
    Biomicrofluidics; 2015 Sep; 9(5):054118. PubMed ID: 26487904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scanning laser pulses driven microfluidic peristaltic membrane pump.
    Chen Y; Wu TH; Chiou PY
    Lab Chip; 2012 Apr; 12(10):1771-4. PubMed ID: 22453871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.
    Iwai K; Shih KC; Lin X; Brubaker TA; Sochol RD; Lin L
    Lab Chip; 2014 Oct; 14(19):3790-9. PubMed ID: 25102160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-driven peristaltic pumping by an actuating splay-bend strip.
    Dradrach K; Zmyƛlony M; Deng Z; Priimagi A; Biggins J; Wasylczyk P
    Nat Commun; 2023 Apr; 14(1):1877. PubMed ID: 37015926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.